Central polynomials for algebras T-prime materials
Autor: | FREITAS, Sabrina Alves de. |
---|---|
Přispěvatelé: | BRANDÃO JÚNIOR, Antônio Pereira., PINTO, Aline Gomes da Silva., GONÇALVES, Dimas José. |
Jazyk: | portugalština |
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da UFCG Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
Popis: | Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-24T16:42:24Z No. of bitstreams: 1 SABRINA ALVES DE FREITAS - DISSERTAÇÃO PPGMAT 2010..pdf: 457483 bytes, checksum: d828740083c1ccca9a0a0f8b45be01d0 (MD5) Made available in DSpace on 2018-07-24T16:42:24Z (GMT). No. of bitstreams: 1 SABRINA ALVES DE FREITAS - DISSERTAÇÃO PPGMAT 2010..pdf: 457483 bytes, checksum: d828740083c1ccca9a0a0f8b45be01d0 (MD5) Previous issue date: 2010-04 Capes Neste trabalho apresentaremos um estudo sobre polinômios centrais ordinários, Z2-graduados e com involução para algumas importantes álgebras na PI-teoria sobre corpos infinitos. Mais precisamente, descreveremos os polinômios centrais Z2-graduados para as álgebras M2(K) (matrizes 2 × 2 sobre um corpo K), M1,1(E) (subálgebra de M2(E) que consite das matrizes cujas entradas da diagonal principal estão em E0 e os da diagonal secundária estão em E1,onde E é a álgebra de Grassmann com unidade de dimensão infinita e E0 e E1 suas componentes homogêneas de graus 0 e 1, respectivamente) e E ⊗ E. Além disso descreveremos os polinômios centrais para E sobre um corpo infinito K de característica diferente de 2 e finalmente os polinômios centrais com involução para M2(K), considerando as involuções transposta e simplética. In this work we study ordinary, Z2-graded central polinomials and central polinomials with involution for some important algebras in the theory of algebras with polinomial identities, over infinite fields.Namely, we decribe Z2-graded central polinomials for the algebras M2(K) (2 × 2 matrices over a field K), M1,1(E) (subalgebra of M2(E) whose entries on the diagonal belong to E0 and the off-diagonal entries lie in E1, E is the infinite-dimensional unitary Grassmann algebra, E0 is the center of E and E1 is the anticommutative part of E) and E ⊗ E. Also, we describe the central polinomials for e over a field K, with charK ≠ 2 and finally the central polinomial with involution for M2 (K), considering the transpose and the sympletic involutions. |
Databáze: | OpenAIRE |
Externí odkaz: |