Data mining for network analysis medium, the filter context collaborative

Autor: Aranha Filho, Francisco José Espósito
Přispěvatelé: Escolas::EAESP
Jazyk: portugalština
Rok vydání: 2005
Předmět:
Zdroj: Repositório Institucional do FGV (FGV Repositório Digital)
Fundação Getulio Vargas (FGV)
instacron:FGV
Popis: In this dissertation, a graphical representation of large networks based on the use of cohesion surfaces over a multidimensionally scaled thematic base is proposed as a tool for Collaborative Filtering. For its development Classic Multidimensional Scaling and Procrustes Analysis are combined in an iterative algorithm, which consolidates partial solutions into an overall continuous representation. Tested on a set of book lending transactions at the Karl A. Boedecker Library, the algorithm produces an output that is thematically interpretable and consistent, with a stress measure smaller than Classic MDS solutions. The study of representation stability in face of sampling uncertainty, based on a sampling simulation at 6 different levels of sampling probability and 500 replications for each level, provides evidence in support of algorithm results validity. Tendo como motivação o desenvolvimento de uma representação gráfica de redes com grande número de vértices, útil para aplicações de filtro colaborativo, este trabalho propõe a utilização de superfícies de coesão sobre uma base temática multidimensionalmente escalonada. Para isso, utiliza uma combinação de escalonamento multidimensional clássico e análise de procrustes, em algoritmo iterativo que encaminha soluções parciais, depois combinadas numa solução global. Aplicado a um exemplo de transações de empréstimo de livros pela Biblioteca Karl A. Boedecker, o algoritmo proposto produz saídas interpretáveis e coerentes tematicamente, e apresenta um stress menor que a solução por escalonamento clássico. O estudo da estabilidade da representação de redes frente à variação amostral dos dados, realizado com base em simulações envolvendo 500 réplicas em 6 níveis de probabilidade de inclusão das arestas nas réplicas, fornece evidência em favor da validade dos resultados obtidos.
Databáze: OpenAIRE