Campos espinoriais em cenários de mundo brana de co-dimensão um
Autor: | Mendes, Wendel Macedo |
---|---|
Přispěvatelé: | Carvalho, Ricardo Renan Landim de, Alencar Filho, Geová Maciel de |
Jazyk: | portugalština |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Repositório Institucional da Universidade Federal do Ceará (UFC) Universidade Federal do Ceará (UFC) instacron:UFC |
Popis: | In this thesis was analyzed the zero mode localization and resonances of 1/2-spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η1, (ii) a Yukawa-dilaton coupling with two parameters η2, and λ, and (iii) a dilaton derivative coupling with parameter h. Together with the deformation parameter s, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of D, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters both chiralities can be localized in odd dimensions. In even dimensions we obtain a massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D=5 do not induces resonances but when we consider D=10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields. Nesta tese foi analisada a localização e ressonâncias de férmions de spin 1/2 em cenários de mundo-brana de Randall-Sundrum de co-dimensão um. Considera-se os casos em que a membrana é do tipo delta de Dirac, parede de domínio não-deformada e deformada. Além de analisar a influência do espaço-tempo D também considera-se três tipos de acoplamentos: (i) o acoplamento de Yukawa padrão com um campo escalar e parâmetro η1, (ii) um acoplamento Yukawa-Dilaton com dois parâmetros η2 e λ e por fim (iii) um acoplamento de derivada do dilaton com parâmetro h. Juntos com o parâmetro de deformação s, tem-se cinco parâmetros livres que foram considerados. A localização do modo zero é dependente da dimensionalidade do espaço-tempo, porque a representação espinorial muda quando a dimensionalidade é ímpar ou par e, portanto, deve ser tratada separadamente. Para o caso (i), encontrou-se que em dimensões ímpares somente uma quiralidade pode ser localizada e em dimensões pares um espinor de Dirac não-massivo pode ser confinado sobre a brana. Nos casos (ii) e (iii) encontrou-se que, para dimensões ímpares, espinores de Weyl com diferentes quiralidades podem ser localizados através de uma escolha apropriada dos parâmetros citados. Em dimensões pares, encontrou-se também que um espinor de Dirac é localizado com uma escolha adequada dos parâmetros livres. Também calculou-se numericamente os coeficientes de transmissçao para a análise dos modos resssonantes, através do método da matriz de transferência. Encontrou-se que os picos de ressonância podem aparecer com o aumento da dimensionalidade do espaço-tempo. Por exemplo, o caso D=5 já analisado na literatura não induz modos ressonantes, mas quando considera-se D=10, um pico de ressonância é encontrado. Portanto, no caso de campos espinoriais, a introdução de mais dimensões no espaco-tempo muda drasticamente a localização do modo zero e as ressonâncias, o que não acontece para os campos bosônicos. |
Databáze: | OpenAIRE |
Externí odkaz: |