Multiple clues for license plate detection and recognition
Autor: | Negri, P., Tepper, M., Acevedo, D., Jacobo, J., Mejail, M. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Segmentation algorithms
Image segmentation Classifiers Shape contexts Character recognition Optical character recognition (OCR) SVM classifiers License plate detection License plates (automobile) Still images Pattern recognition Feature extraction Pixel values Computer vision Automobiles Optical character recognition |
Zdroj: | Lect. Notes Comput. Sci. 2010;6419 LNCS:269-276 Biblioteca Digital (UBA-FCEN) Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
Popis: | This paper addresses a license plate detection and recognition (LPR) task on still images of trucks. The main contribution of our LPR system is the fusion of different segmentation algorithms used to improve the license plate detection. We also compare the performance of two kinds of classifiers for optical character recognition (OCR): one based on the a contrario framework using the shape contexts as features and the other based on a SVM classifier using the intensity pixel values as features. © 2010 Springer-Verlag. Fil:Tepper, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Acevedo, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mejail, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
Databáze: | OpenAIRE |
Externí odkaz: |