Análise de Interações do Ambiente Virtual de Aprendizagem para Predição de Evasão em Cursos no Ensino a Distância

Autor: Sonnenstrahl, Thiago Siqueira, Bernardi, Giliane, Pertile, Solange
Jazyk: portugalština
Rok vydání: 2021
Zdroj: EaD em Foco; Vol. 11 No. 1 (2021)
EaD em Foco; Vol. 11 Núm. 1 (2021)
EaD em Foco; v. 11 n. 1 (2021)
EAD em Foco
Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro (CECIERJ)
instacron:CECIERJ
ISSN: 2177-8310
Popis: This article aims, through Educational Data Mining (MDE), to analyze, through the interaction of students in the Virtual Learning Environment (AVA), possible dropouts in distance learning courses, providing strategic data for decision making by the institution's educational managers. In order to carry out the experiments, two sets of data were used containing the interactions of students in the AVA Moodle from two subsequent classes in distance learning mode. As a result, the hit rate for the first set of data was 93%, obtained with the Randon Forest algorithm, while for the second set, the hit rate was 85% with the model generated by the J48 algorithm. The mining results dispelled the visualized_task and the visualized_material as evasion indicators. Thus, it can be seen that students who have little interaction with the resources within the environment and do not see the materials and tasks available are more likely to drop out of the course. Keywords: Distance education. Evasion. Educational data mining. Este artigo tem como objetivo, através da Mineração de Dados Educacionais (MDE), analisar, por meio da interação dos alunos no Ambiente Virtual de Aprendizagem (AVA), possíveis evasões em cursos na modalidade a distância, disponibilizando dados estratégicos para a tomada de decisão pelos gestores educacionais da instituição. Para a realização dos experimentos foram utilizados dois conjuntos de dados contendo as interações dos alunos no AVA Moodle de duas turmas subsequentes na modalidade EaD. Como resultado, a taxa de acerto (número de alunos que os algoritmos classificaram corretamente como evadido ou concluintes) do primeiro conjunto de dados foi de 93%, obtida com o algoritmo Randon Forest, já para o segundo conjunto, a taxa de acerto foi de 85% com o modelo gerado pelo algoritmo J48. Os resultados da mineração apresentaram a tarefa_visualizada e o material_visualizado como indicadores de evasão. Desta forma, pode-se constatar que os alunos que pouco interagem com os recursos dentro do ambiente e não visualizam os materiais e tarefas disponibilizadas são mais propensos a evadirem do curso. Palavras-chave: Educação a distância. Evasão. Mineração de dados educacionais.
Databáze: OpenAIRE