Estimação de componentes de variância utilizando-se inferência Bayesiana e frequentista em dados simulados sob heterogeneidade de variâncias
Autor: | CARNEIRO JUNIOR, J. M., ASSIS, G. M. L. de, EUCLYDES, R. F., TORRES, R. de A., LOPES, P. S. |
---|---|
Přispěvatelé: | JOSE MARQUES CARNEIRO JUNIOR, CPAF-AC, GISELLE MARIANO LESSA DE ASSIS, CPAF-AC, Ricardo Frederico Euclydes, Universidade Federal de Viçosa (UFV), MG, Robledo de Almeida Torres, Universidade Federal de Viçosa (UFV), MG, Paulo Sávio Lopes, Universidade Federal de Viçosa (UFV), MG. |
Jazyk: | portugalština |
Rok vydání: | 2007 |
Předmět: |
Heterogeneidad genética
Bayesian inference Amostragem de Gibbs Componentes de variância Estimativa Parâmetro genético Cruce de animales Modelo de simulação Análisis estadístico Genetic heterogeneity Gibbs sampling Avaliação genética Inferência Bayesiana Heterogeneidade de variância Sistema Genesys Varianza genética Genoma Genetic variance Metodologia REML Animal breeding Simulación por computadora Genome Computer simulation Análise estatística Genetic parameters Melhoramento genético animal Informação a priori Statistical analysis |
Zdroj: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA-Alice) Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
Popis: | Foi simulado um genoma de 3.000 centimorgans de comprimento considerando uma única característica quantitativa, governada por 800 locos com dois alelos por loco. Segundo a estrutura genômica proposta, foram simulados 1.500 machos e 1.500 fêmeas que formaram a população-base. A partir da população-base foram formadas duas populações iniciais, uma grande e outra pequena. Dois tipos de estruturas de heterogeneidade de variâncias foram inseridos nas populações iniciais: heterogeneidade de variância genética aditiva e heterogeneidade de variâncias genética aditiva e ambiental. Para obtenção destas estruturas, foram feitos descartes estratégicos dos valores genéticos aditivos e ambientais de acordo com o tipo de heterogeneidade e o nível de variabilidade desejada: alta, média ou baixa. Os componentes de variância foram estimados por meio da metodologia Bayesiana via Amostragem de Gibbs e pelo método REML. Para a metodologia Bayesiana, foram utilizados três níveis de informação a priori: não-informativo, pouco informativo e informativo. Os métodos comparados apresentaram resultados semelhantes quando priors não-informativos foram utilizados e as populações de tamanho grande, de modo geral, apresentaram melhores estimativas. Para as populações pequenas, as análises realizadas considerando os níveis de variabilidade separadamente apresentaram maiores problemas, em virtude do pequeno tamanho das subpopulações formadas. Observou-se, para a metodologia Bayesiana, que o aumento no nível de informação a priori influenciou positivamente as estimativas dos componentes de variância, principalmente para as populações pequenas. Portanto, na presença de heterogeneidade de variâncias, as metodologias se comportam de forma semelhante. Entretanto, para populações pequenas a metodologia Bayesiana conduz a melhores estimativas quando informações adicionais estão disponíveis. Suplemento. |
Databáze: | OpenAIRE |
Externí odkaz: |