Investigation of chaotic diffusion in Hamiltonian mapping

Autor: Kuwana, Célia Mayumi [UNESP]
Přispěvatelé: Universidade Estadual Paulista (Unesp), Leonel, Edson Denis [UNESP]
Jazyk: portugalština
Rok vydání: 2018
Předmět:
Zdroj: Repositório Institucional da UNESP
Universidade Estadual Paulista (UNESP)
instacron:UNESP
Popis: Submitted by Célia Mayumi Kuwana (celiamkuwana@hotmail.com) on 2018-05-16T16:10:10Z No. of bitstreams: 1 kuwana_cm_me_rcla.pdf: 1196862 bytes, checksum: 37b452d62ccbc0a6e02de1a013df0849 (MD5) Rejected by Adriana Aparecida Puerta null (dripuerta@rc.unesp.br), reason: Prezada Célia, O documento enviado para a coleção Instituto de Biociências Rio Claro foi recusado pelo(s) seguinte(s) motivo(s): - Falta a capa, elemento obrigatório, que deve ser inserida antes da folha de rosto no arquivo pdf. - Falta a informação de Aprovada na folha de aprovação, sendo que a folha, deve ser solicitada à Seção de Pós-Graduação e inserida após a ficha catalográfica. O documento enviado não foi excluído. Para revisá-lo e realizar uma nova tentativa de envio, acesse: https://repositorio.unesp.br/mydspace Em caso de dúvidas entre em contato pelo email repositoriounesp@reitoria.unesp.br. Agradecemos a compreensão e aguardamos o envio do novo arquivo. Atenciosamente, Biblioteca Campus Rio Claro Repositório Institucional UNESP https://repositorio.unesp.br on 2018-05-16T17:44:23Z (GMT) Submitted by Célia Mayumi Kuwana (celiamkuwana@hotmail.com) on 2018-05-17T18:36:34Z No. of bitstreams: 2 kuwana_cm_me_rcla.pdf: 1196862 bytes, checksum: 37b452d62ccbc0a6e02de1a013df0849 (MD5) kuwana_cm_me_rcla.pdf: 1484457 bytes, checksum: 49f6c72467f2a1cd318e79d6f53b0ec8 (MD5) Approved for entry into archive by Adriana Aparecida Puerta null (dripuerta@rc.unesp.br) on 2018-05-18T16:28:17Z (GMT) No. of bitstreams: 1 kuwana_cm_me_rcla.pdf: 1334658 bytes, checksum: f623f773fd644ffaefb15c97d13db854 (MD5) Made available in DSpace on 2018-05-18T16:28:17Z (GMT). No. of bitstreams: 1 kuwana_cm_me_rcla.pdf: 1334658 bytes, checksum: f623f773fd644ffaefb15c97d13db854 (MD5) Previous issue date: 2018-02-20 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Neste trabalho apresentaremos e discutiremos algumas propriedades dinâmicas para uma família de mapeamentos discretos que preservam a área no espaço de fases nas variáveis momentum, I, e coordenada generalizada, θ. O mapeamento é descrito por dois parâmetros de controle, sendo eles ε, ajustando a intensidade da não linearidade, e γ, um parâmetro que fornece a forma da divergência da variável “θ”no limite em que I → 0. O parâmetro ε controla a transição de integrabilidade, quando ε = 0, para não integrabilidade, no limite em que ε ≠ 0. O objetivo principal deste trabalho é descrever o comportamento das curvas do momentum médio, I_RMS(ε,n), em função de n, a partir de uma função de probabilidade, P(I(n)), de observar um determinado momentum I em um instante n. Para tanto, resolveremos a Equação da Difusão analiticamente, considerando os casos: (i) o momentum inicial nulo, I_0 = 0, e (ii) o momentum inicial não nulo, I_0 ≠ 0. Nossos resultados descrevem bem os resultados fenomenológicos conhecidos na literatura (Physics Letters A, 379: 1808 (2015)). In this work we will present and discuss some dynamical properties of a family of mappings that preserves area in the phase space for two variables momentum, I, and generalized coordinate, θ. The mapping is controled by two parameters: ε, tunning the intensity of nonlinearity, and γ, that describes the form of divergence of θ when I → 0. The parameter ε defines a transition from integrability, when ε = 0, to nonintegrability, when ε ≠ 0. The main goal of this work is to describe the curves of average momentum, I_RMS(ε,n), in terms of n, from a probability function, P(I(n)), to observe a determined momentum I at an instant n. Therefore, we will solve the Diffusion equation analitically considering the cases: (i) the initial momentum is null, I_0 = 0, and (ii) the initial momentum is nonzero, I_0 ≠ 0. Our results describe well the known phenomenological results in literature (Physics Letters A, 379: 1808 (2015)). CAPES-DS: 3300413-7.
Databáze: OpenAIRE