Quantification of the uncertainty of the stochastic bending problem of a Levinson-Bickford beam using the λ-Neumann Monte Carlo methodology
Autor: | Squarcio, Roberto Mauro Felix |
---|---|
Přispěvatelé: | Silva Junior, Claudio Roberto Avila da, Deus, Hilbeth Parente Azikri de, Belo, Ivan Moura, Silva Neto, Joao Morais da, Almeida, Julio Cezar de |
Jazyk: | portugalština |
Rok vydání: | 2021 |
Předmět: |
Monte Carlo
Método de Estimativa de parâmetros Finite element method Mathematical models Vigas Deformações e tensões Girders Engenharia Mecânica Método dos elementos finitos Modelos matemáticos Monte Carlo method Simulation methods Processo estocástico Stochastic processes ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS [CNPQ] Parameter estimation Métodos de Simulação |
Zdroj: | Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
Popis: | Na mecânica estrutural estocástica, o tratamento da incerteza é frequentemente o principal objetivo das simulações numéricas utilizadas para estimar as respostas de um sistema ou fenômeno físico. Essas previsões podem formar a base para a tomada de decisões e, portanto, uma questão relevante a ser estudada é o quão confiável elas são. As incertezas, em geral, são avaliadas sob dois aspectos: a partir da informação estatística disponível e considerando o modelo matemático que representa o problema numericamente. O modelo identifica um conjunto de relações geralmente baseadas em princípios, leis de conservação e métricas de magnitude física. No caso do problema de flexão estocástica de viga é possível associar a aleatoriedade às propriedades do material, da geometria e as cargas atuantes sobre a estrutura e, desta forma as estimativas das respostas estarão presentes no campo de deslocamento, tensão e deformação. No presente trabalho, a formulação variacional do problema estocástico de valor de contorno elíptico com coeficientes aleatórios é estudada à luz da versão estocástica do lema de Lax-Milgram e a propagação e quantificação da incerteza são investigadas a partir da recente metodologia numérica de complexidade assintótica λ-Neumann Monte Carlo. Os resultados da simulação numérica são obtidos para o problema de flexão estocástica de viga de Levinson-Bickford. Esta teoria de alta ordem apresenta a vantagem de atender à condição de cisalhamento nulo nas superfícies laterais e sua formulação pelo método dos Elementos Finitos evita o inconveniente numérico de travamento (shear locking). As soluções são apresentadas sobre um conjunto de aproximações numéricas através de estimativas de erro dos estimadores de valor esperado e variância do campo de deslocamento. São comparados diferentes métodos de quantificação, modelagem da incerteza, condições de contorno, coeficiente de variação e propriedades material e geométrica da viga. In stochastic structural mechanics, the treatment of uncertainty is often the main goal of numerical simulations used to estimate the responses of a system or physical phenomenon. These predictions can form the basis for decision making, and therefore a relevant question to be studied is how reliable they are. In general, uncertainties are evaluated from two aspects: from the available statistical information and by considering the mathematical model that represents the problem in a numerical way. The model identifies a set of relationships usually based on principles, conservation laws, and metrics of physical magnitude. In the case of the stochastic beam bending problem, it is possible to associate randomness to material properties, geometry and loads acting on the structure, and thus the response estimates will be present in the displacement, stress and strain field. In the present work, the variational formulation of the stochastic elliptic boundary value problem with random coefficients is studied in the light of the stochastic version of the Lax-Milgram lemma, and the propagation and quantification of uncertainty are investigated from the recent λ-Neumann Monte Carlo numerical methodology of asymptotic complexity. Numerical simulation results are obtained for the Levinson-Bickford stochastic beam bending problem. This high-order theory has the advantage of meeting the condition of zero shear at the lateral surfaces, and its formulation by the Finite Element method avoids the numerical drawback of shear locking. The solutions are presented over a set of numerical approximations through error estimates of the expected value and variance estimators of the displacement field. Different methods of quantification, uncertainty modeling, boundary conditions, coefficient of variation, and material and geometric properties of the beam are compared. |
Databáze: | OpenAIRE |
Externí odkaz: |