Existência e multiplicidade de soluções não triviais para um problema elíptico envolvendo os operadores bi-harmônico e o p-Laplaciano
Autor: | Almeida, Wendy Fernanda de |
---|---|
Jazyk: | portugalština |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Repositório Institucional da UnB Universidade de Brasília (UnB) instacron:UNB |
Popis: | Dissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2022. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Neste trabalho apresentaremos um estudo sobre a classe de equações bi-harmônicas não lineares com p-Laplaciano, que foram investigadas pelos autores Juntao Sun, Jifeng Chu, Tsungfang Wu no trabalho [15], sobre o seguinte problema: ∆2u − β∆pu + λV (x)u = f(x, u) ∈ R N , u ∈ H2 (R N ), (1) onde N ≥ 1, β ∈ R, λ > 0 são parâmetros e ∆pu = div(|∇u| p−2∇u) com p ≥ 2. Diferente de outros artigos que tratam esse problema, os autores substituíram o Laplaciano com p-Laplaciano e permitiram que β seja negativo. Sobre adequadas hipóteses em V (x) e f(x, u), foi possível obter a existência e multiplicidade de soluções não triviais para λ grande o suficiente. A prova se baseia em métodos variacionais assim como na desigualdade de Gagliardo-Nirenberg. In this work we will present a study on the class of nonlinear biharmonic equations with pLaplacian, which were investigated by the authors Juntao Sun, Jifeng Chu, Tsung-fang Wu at work [15] on the following problem: ∆2u − β∆pu + λV (x)u = f(x, u) ∈ R N , u ∈ H2 (R N ), (2) where N ≥ 1, β ∈ R, λ > 0 are parameter and ∆pu = div(|∇u| p−2∇u) with p ≥ 2. Unlike other papers dealing with this problem, the authors replaced the Laplacian with p-Laplacian and allowed β to be negative. Under suitable assumptions in V (x) and f(x, u), it was possible to obtain the existence and multiplicity of non-trivial solutions for λ large enough. The proof relies on variational methods and Gagliardo-Nirenberg inequality |
Databáze: | OpenAIRE |
Externí odkaz: |