The packing radius of poset codes
Autor: | Lucas D'Oliveira, Rafael Gregorio, 1988 |
---|---|
Přispěvatelé: | Firer, Marcelo, 1961, Kohayakawa, Yoshiharu, Panek, Luciano, Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Ciência da Computação, Programa de Pós-Graduação em Matemática, UNIVERSIDADE ESTADUAL DE CAMPINAS |
Jazyk: | portugalština |
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP |
Popis: | Orientador: Marcelo Firer Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica Resumo: Até o trabalho presente, só era conhecido o raio de empacotamento de um código poset nos casos do poset ser uma cadeia, hierárquico, a união disjunta de cadeias do mesmo tamanho, e para algumas famílias de códigos. Nosso objetivo é abordar o caso geral de um poset qualquer. Para isso, iremos dividir o problema em dois. A primeira parte consiste em encontrar o raio de empacotamento de um único vetor. Veremos que este problema é equivalente à uma generalização de um problema NP-difícil famoso conhecido como \o problema da partição". Veremos então os principais resultados conhecidos sobre este problema dando atenção especial aos algoritmos para resolvê-lo. A receita principal destes algoritmos é o método da diferenciação, e sendo assim, iremos estendê-la para o caso geral. A segunda parte consiste em encontrar o vetor que determina o raio de empacotamento do código. Para isso, mostraremos como é as vezes possível comparar o raio de empacotamento de dois vetores sem calculá-los explicitamente Abstract: Until the present work, the packing radius of a poset code was only known in the cases where the poset was a chain, hierarchy, a union of disjoint chains of the same size, and for some families of codes. Our objective is to approach the general case of any poset. To do this, we will divide the problem into two parts. The first part consists in finding the packing radius of a single vector. We will show that this is equivalent to a generalization of a famous NP-hard problem known as \the partition problem". Then, we will review the main results known about this problem giving special attention to the algorithms to solve it. The main ingredient to these algorithms is what is known as the differentiating method, and therefore, we will extend it to the general case. The second part consists in finding the vector that determines the packing radius of the code. For this, we will show how it is sometimes possible to compare the packing radius of two vectors without calculating them explicitly Mestrado Matemática Mestre em Matemática |
Databáze: | OpenAIRE |
Externí odkaz: |