Curvature Mean Constant Surfaces in Euclidean Space

Autor: Santos, José Ramos Araujo dos
Přispěvatelé: Barreto, Alexandre Paiva
Jazyk: portugalština
Rok vydání: 2019
Předmět:
Zdroj: Repositório Institucional da UFSCAR
Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
Popis: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) This paper deals with the surfaces of constant mean curvature in the Euclidean space. The first part of the text is devoted to minimal surfaces. We begin our studies with the Enneper-Weirstrass Representation Theorem and discuss some of its most important applications such as Jorge-Xavier, Rosenberg-Toubiana, and Osserman Theorems. Next, we present the Principle of Tangency of Fontenele-Silva and use it to demonstrate the classical half-space Theorem. We close this part by discussing the topological constraints imposed by the hypothesis of finite total curvature. In the second part of the manuscript we studied the surfaces of constant mean curvature, possibly non-zero. We start with Heinz's Theorem and its applications, we present the classification theorem of the surfaces of rotation with constant mean curvature made by Delaunay, and we conclude with the concept of stability where we demonstrate the classical Sphere Stability Theorem. We close the text with a succinct presentation of recent results on the surfaces of Weingarten in the Euclidean space. Este trabalho versa sobre as superfícies de curvatura média constante no espaço Euclidiano. A primeira parte do texto é devotada às superfícies mínimas. Iniciamos nossos estudos com o Teorema de Representação de Enneper-Weirstrass e discutimos algumas de suas aplicações mais importantes como os Teoremas de Jorge-Xavier, Rosenberg-Toubiana e Osserman. Em seguida apresentamos o Princípio de Tangência de Fontenele-Silva e o utilizamos para demonstrar o clássico Teorema do Semi-espaço. Fechamos esta parte discutindo as restrições topológicas impostas pela hipótese de curvatura total finita. Na segunda parte da dissertação estudamos as superfícies de curvatura média constante possivelmente não nula. Iniciamos com o Teorema de Heinz e suas aplicações, apresentamos o teorema de classificação das superfícies de revolução com curvatura média constante feito por Delaunay e finalizamos com o conceito de estabilidade, onde demonstramos o clássico Teorema de Estabilidade da Esfera. Fechamos o texto com uma apresentação sucinta de resultados recentes sobre as superfícies de Weingarten no espaço Euclidiano.
Databáze: OpenAIRE