1H NMR metabolomic approach reveals chlorogenic acid as a response ofsugarcane induced by exposure toDiatraea saccharalis

Autor: SABINO, A. R., TAVARES, S. S., RIFFEL, A., LI, J. V., OLIVEIRA, D. J. A., FERES, C. I. M. A., HENRIQUE, L., OLIVEIRA, J. S., CORREIA, G. D. S., NASCIMENTO, T. G., HAWKES, G., SANTANA, A. E. G., HOLMES, E., BENDO, E. S.
Přispěvatelé: ADILSON R. SABINO, SHEILA S. TAVARES, ALESSANDRO RIFFEL, CPATC, JIA V. LI, DEMETRIOS J. A. OLIVEIRA, CHRYSTIAN I. M. A. FERES, JAIM S. OLIVEIRA, GONCALO D. S. CORREIA, ANDERSON R. SABINO, TICIANO G. NASCIMENTO, GEOFREY HAWKES, ANTONIO E. G. SANTANA, ELAINE HOLMES, EDSON S. BENTO.
Jazyk: portugalština
Rok vydání: 2019
Předmět:
Zdroj: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA-Alice)
Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
Popis: Sugarcane(Saccharum officinarum)has been considered one of the most efficient energy crops, but its productionyield is sensitive to outbreaks of pest insects, especially the sugarcane borerDiatraea saccharalis. Geneticbreeding programs and biotechnology projects have been developed to decode the defense mechanisms of su-garcane against herbivorous insect attacks, and the develop plague-resistant plants. We performed metabolicprofile analysis of the SP791011 sugarcane variety?s response toDiatraea saccharalisherbivory, using NuclearMagnetic Resonance (NMR) spectroscopy of organic leaf extracts. The leaf response of SP791011 toD. saccharalisresulted in depletion of choline, alanine, sucrose, glutamate, trigonelline, and isomers (E)-aconitate, (Z)-aco-nitate, and higher expression of chlorogenic acid and other caffeic acid conjugates in sugarcane leaves. Theincrease in chlorogenic acid suggests the shikimic acid pathway was induced byD. saccharalisherbivory, in-creasing the biosynthesis of phenylpropanoids such as chlorogenic acid in the sugarcane leaves. In addition tothe herbivory test, we performed an in vivo biological assay by adding chlorogenic acid to an artificial diet toD.saccharaliscaterpillars. This assay demonstrated a decrease in the development time of the pupae compared withpupae from caterpillars raised under normal diet. However, deformations in moth wings fed with chlorogenicacid were observed for three concentrations tested (0.05 mg/mL, 0.5 mg/mL and 5 mg/mL) during the in vivobioassay. Chlorogenic acid may be considered a natural biopesticide and its production could be induced todevelop more resistant sugarcane varieties againstD. saccharalis. Made available in DSpace on 2020-01-14T18:15:08Z (GMT). No. of bitstreams: 1 2019h1nmr.pdf: 901829 bytes, checksum: b0e057c6551cd7588d81181d162187c4 (MD5) Previous issue date: 2019
Databáze: OpenAIRE