On a numerical-analytical method for constructing extremal polynomials of a complex argument

Autor: Trubnikov, Yu. V., Chernyavsky, M. M.
Jazyk: ruština
Rok vydání: 2023
Předmět:
Popis: Разработан численно-аналитический метод построения экстремальных в чебышевской норме полиномов, заданных на квадрате комплексной плоскости. Такие полиномы являются естественным обобщением классических полиномов Чебышева первого рода. Классические условия Чебышева об альтернансе не распространяются на комплексную ситуацию, а критерий Колмогорова и критерий Иванова – Ремеза трудно проверяемы для установления свойства экстремальности конкретных полиномов в комплексном случае. С помощью разработанной авторами субдифференциальной конструкции вычислены явно экстремальные полиномы на квадратах в комплексной плоскости. Методы исследования – методы математического и функционального анализа с использованием системы компьютерной математики Maple 2021, методы теории функций и некоторые общие результаты теории оптимизации. = This article is devoted to the development of a numerical-analytical method for constructing extremes in the Chebyshev norm polynomials, given on the square of the complex plane. The studied polynomials are a generalization of the classical Chebyshev polynomials of the first kind. In the complex case there are no classical Chebyshev alternance conditions, and the Kolmogorov criterion along with the Ivanov – Remez criterion are difficult to prove for establishing the extremality property of specific polynomials. On the basis of the subdifferential construction developed by the authors of the article the extremal polinomials on the squares of the complex plane are calculated in an explicit way. The basic research methods are the methods of functional and complex mathematical analysis, as well as the Maple 2021 computer mathematics system. Methods of function theory and some general results of optimization theory are also used.
Databáze: OpenAIRE