Classical and Bayesian estimation of volatility in the Black-Scholes model
Autor: | Cangrejo Esquive, Alvaro Javier, Tovar Cuevas, José Rafael, García, Isabel Cristina, Manotas Duque, Diego Fernando |
---|---|
Jazyk: | Spanish; Castilian |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Revista de métodos cuantitativos para la economía y la empresa, ISSN-e 1886-516X, Vol. 34, 2022, págs. 237-262 |
Popis: | La valoración de opciones y en gran medida el mercado de derivados financieros requiere de una óptima estimación de la volatilidad, ya que justamente ésta es la variable que se negocia. Se presenta entonces una metodología estadística para la estimación del parámetro de volatilidad para un activo, usando métodos propios del enfoque Bayesiano. Para modelar el comportamiento natural del parámetro que representa la volatilidad en el modelo de Black-Scholes, se utilizan distribuciones de probabilidad de la familia Gama y la distribución Lévy Estándar. Los resultados obtenidos usando la metodología propuesta se contrastan con los obtenidos al estimar el parámetro desde el enfoque clásico donde se implementa el método de la Máxima Verosimilitud y la técnica Boostrap. Se logra evidenciar que el procedimiento de estimación desde el paradigma bayesiano, permitió obtener estimaciones del parámetro de volatilidad más ajustadas y precisas, cuando en la distribución de los retornos se consideran valores extremos. Estas características del estimador permiten que, al evaluar el precio de la opción, al utilizar el modelo de Black-Scholes, sea más próximo a lo que se espera que ocurra en el mercado financiero. The valuation of options and to a large extent the financial derivatives market require an optimal estimation of the volatility, since this is precisely the variable that is negotiated. We present then a statistical methodology for the estimation of the volatility parameter for an asset using methods of the Bayesian approach to statistics. As prior distributions for volatility parameter, models of the Gamma family and the Standard Levy are assumed. The results obtained using the proposed methodology are contrasted with those obtained when estimating the parameter from the classical approach, where the maximum likelihood method and the Boostrap technique are implemented. It is possible to demonstrate that the estimation procedure from the Bayesian paradigm, allowed to obtain more adjusted and precise volatility parameter estimations, when in the distribution of the returns, extreme values are considered. These characteristics of the estimator allow that predictions of the prices of the options obtained using the Black-Scholes model to be closer to what is expected to occur in the financial market. Universidad Pablo de Olavide |
Databáze: | OpenAIRE |
Externí odkaz: |