Equivalent between constrained optimal smoothing and Bayesian estimation

Autor: Grammont, Laurence, Maatouk, Hassan, Bay, Xavier
Přispěvatelé: Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Modélisation mathématique, calcul scientifique (MMCS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Analyse, Géométrie et Modélisation (AGM - UMR 8088), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Institut Henri Fayol (FAYOL-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département Génie mathématique et industriel (FAYOL-ENSMSE), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: In this paper, we extend the correspondence between Bayesian estima- tion and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) by adding convex constraints to the problem. Through a sequence of approxi- mating Hilbertian subspaces and a discretized model, we prove that the Max- imum a posteriori (MAP) of the posterior distribution is exactly the optimal constrained smoothing function in the RKHS. This paper can be read as a generalization of the paper [15], where it is proved that the optimal smooth- ing solution is the mean of the posterior distribution. Synthetic and real data studies confirm the correspondence established in this paper.
Databáze: OpenAIRE