Пространственная классификация гиперспектральных изображений с использованием метода кластеризации k-means++

Jazyk: ruština
Rok vydání: 2014
Předmět:
Zdroj: Компьютерная оптика.
ISSN: 2412-6179
0134-2452
Popis: Предлагается и исследуется комплексный метод классификации гиперспектральных изображений с учётом пространственной близости пикселей. Ключевой особенностью метода является то, что он использует распространённые и достаточно простые алгоритмы для достижения высокой точности. Метод комбинирует результаты попиксельной классификации с использованием метода опорных векторов и множества контуров, полученных в результате кластеризации изображения методом k-means++. Для предотвращения избыточной обработки схожих данных используется метод главных компонент. Предложенный метод позволяет повысить точность и скорость классификации гиперспектральных данных.
A complex spectral-spatial classification scheme for hyperspectral images is proposed and explored. The key feature of method is using widespread and simple enough algorithms while having high precision. The method combines the results of a pixel wise support vector machine classification and the segmentation map obtained by partitional clustering using majority voting. The k-means++ clusterization algorithm is used for image clustering. Principal component analysis is used to prevent redundant processing of similar data. The proposed method provides improved precision and speed of hyperspectral data classification.
Databáze: OpenAIRE