О ВЛИЯНИИ МЛАДШИХ ЧЛЕНОВ ПО ПЕРЕМЕННОЙ $x$ НА СПЕКТРАЛЬНЫЕ СВОЙСТВА ЗАДАЧИ ДИРИХЛЕ ДЛЯ ГИПЕРБОЛИЧЕСКИХ СИСТЕМ
Jazyk: | ruština |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Вестник Самарского государственного технического университета. Серия Физико-математические науки. |
ISSN: | 2310-7081 1991-8615 |
Popis: | Работа посвящена сравнительному изучению и описанию спектральных свойств дифференциальных операторов, порождённых задачей Дирихле для гиперболической системы без «младших членов» вида $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2} = \lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2} = \lambda{u^2}+ f^2, $$ и для гиперболической системы с <> - $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2}+\cfrac{\partial{u^2}}{\partial{x}} =\lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2}+\cfrac{\partial{u^1}}{\partial{x}} = \lambda{u^2}+ f^2, $$ рассматриваемых в замыкании $V_{t,x}$ ограниченной области $\Omega_{t,x}=(0;\pi)^2$ евклидова пространства $\mathbb{R}^2_{t,x}.$ Исследование спектральных свойств граничных задач для систем линейных дифференциальных уравнений гиперболического типа ведётся в гильбертовом пространстве $\mathcal{H}_{t,x}$ в терминах спектрально замкнутых операторов $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x}$. В настоящей работе для замкнутых дифференциальных операторов $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x},$ порождённых задачей Дирихле для гиперболических систем второго порядка, изучены спектры: $C\sigma{L}=R\sigma{L}$ - пустое множество; точечный спектр $P\sigma{L}$ располагается в вещественной прямой комплексной плоскости $\mathbb{C}$. В случае гиперболической системы без младших членов собственные вектор-функции оператора $L$ образуют ортогональный базис. В случае гиперболической системы с младшими членами вектор-функции оператора $L$ образуют базис Рисса, не являющийся ортогональным в гильбертовом пространстве $\mathcal{H}_{t,x}.$ Сформулированы теоремы о структуре спектра $\sigma L$ оператора $L$, порождённого задачей Дирихле. We made the comparison study and characterize the spectral properties of differential operators induced by the Dirichlet problem for the hyperbolic system without the lowest terms of the form $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2} = \lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2} = \lambda{u^2}+ f^2, $$ and for the hyperbolic system with the lowest terms of the form $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2}+\cfrac{\partial{u^2}}{\partial{x}} =\lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2}+\cfrac{\partial{u^1}}{\partial{x}} = \lambda{u^2}+ f^2, $$, which are considered in the closure $V_{t,x}$ of the bounded domain $\Omega_{t,x}=(0;\pi)^2$ in Euclidean space $\mathbb{R}^2_{t,x}.$ The spectral properties of the boundary value problems for the systems of linear differential equations of the hyperbolic type are investigated in the Hilbert space $\mathcal{H}_{t,x}$ in the terms of spectral closed operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x}$. We study the spectra of the closed differential operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x},$ induced by the Dirichlet problem for the second order hyperbolic systems: $C\sigma{L}=R\sigma{L}$ empty set; point spectrum $P\sigma{L}$ is in the real straight line of the complex plane $\mathbb{C}$. The operator $L$ eigen vector functions generate the orthogonal basis for the hyperbolic system without the lowest terms. For the hyperbolic system with the lowest terms the operator $L$ eigen vector functions generate the Riesz basis, nonorthogonal in the Hilbert space $\mathcal{H}_{t,x}.$ The theorems on the structure of the induced by the Dirichlet problem operator $L$ spectrum $\sigma L$ are formulated. |
Databáze: | OpenAIRE |
Externí odkaz: |