Об устойчивых алгоритмах численного решения интегро-алгебраических уравнений

Jazyk: ruština
Rok vydání: 2013
Předmět:
Zdroj: Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование.
ISSN: 2308-0256
2071-0216
Popis: При исследованиях в различных областях приложений, если моделируемый процесс обладает последействием, возникает необходимость изучения интегро-алгебраических уравнений (ИАУ). В частности, в виде ИАУ можно записать систему взаимосвязанных интегральных уравнений Вольтерра I, II рода и алгебраических уравнений. В работе рассматриваются линейные ИАУ, для численного решения которых были сконструированы многошаговые методы, основанные на явных методах типа Адамса и экстраполяционных формулах. Ранее была доказана сходимость предлагаемых алгоритмов. В данной работе показано, что полученные многошаговые алгоритмы обладают свойством саморегуляризации, а параметром регуляризации является шаг сетки, определенным образом связанный с уровнем погрешности правой части рассматриваемых систем. Результаты численных расчетов иллюстрируют теоретические выкладки.
There is the necessity to study integral-algebraic equations if a prototype process has an aftereffect at the analysis of various areas of science. Particularly, a system of interrelated Volterra equations of the first and second kind and algebraic equations can be written as integral-algebraic equation. In this paper linear integral-algebraic equations are considered. We have constructed multistep methods for numerical solutions of IAEs. These methods are based on Adams quadrature formulas and on extrapolation formulas as well. We have proven suggested algorithms convergence. In this paper we show that our multistep methods have a property of self-regularizing; and regularization parameter is the step of a grid, which is connected with the level of accuracy of right-part error of the system under consideration. The results of numerical experiments illustrate theoretical computations.
Databáze: OpenAIRE