О СУЩЕСТВОВАНИИ РЕШЕНИЯ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ГИБРИДНОЙ СИСТЕМОЙ

Jazyk: ruština
Rok vydání: 2017
Předmět:
Zdroj: Известия Иркутского государственного университета. Серия: Математика.
ISSN: 2541-8785
1997-7670
Popis: Рассматривается задача оптимального управления гибридной динамической системой достаточно общего вида. В литературе подобные системы также часто называют дискретно-непрерывными или логико-динамическими. Они возникают при математическом моделировании целого ряда технических процессов. С помощью гибридных систем можно, к примеру, описать функционирование коробки передач в автомобиле, работу автоматической системы климат-контроля, некоторые процессы с эффектом гистерезиса, динамические системы с соударениями и кулоновским трением, а также многие другие. Математической теории оптимального управления такими системами посвящено большое число статей, в частности, к настоящему времени получены необходимые и достаточные условия оптимальности, а также разработаны итерационные процедуры последовательного улучшения. Однако авторам не известно о существовании каких-либо работ, посвящённых вопросам существования оптимальных управлений. Отчасти восполнить этот пробел призвана данная статья. Напомним, что для классической задачи оптимального управления основной способ доказательства существования решения состоит в том, чтобы установить эквивалентность этой задачи некоторой задаче математического программирования, состоящей в минимизации непрерывной функции на множестве достижимости рассматриваемой управляемой системы. Тогда, в силу классической теоремы Вейерштрасса, условия компактности множества достижимости и будут условиями существования оптимального управления. В данной работе мы показываем, что для рассматриваемой в статье гибридной системы подобный подход также может быть применён. Эквивалентная задача математического программирования оказывается несколько сложнее, а доказательство компактности множества её допустимых значений требует уже знания свойств интегральной воронки управляемой системы, а не её множеств достижимости.
In this note we consider an optimal control problem for a hybrid dynamical system. In Russian literature such systems are also called discrete-continuous or mixed logical dynamical systems. Hybrid systems usually appear as mathematical models of various technical processes. For example, they describe the functioning of automobile transmissions, temperature control systems, certain processes with hysteresis, dynamical systems with collisions or Coulomb friction, and many others. Mathematical theory of optimal control for such systems is currently well-developed; in particular, necessary and sufficient optimality conditions are found and numerical algorithms are constructed. On the other hand, the authors are not aware of any results on existence of optimal controls. The aim of the paper is to fill the above mentioned gap. Recall that to prove the existence is enough to show that the initial optimal control problem is equivalent to a nonlinear optimization problem that consists in minimizing a continuous function on a reachable set of the control system. Then, according to the Weierstrass theorem, conditions ensuring compactness of the reachable set also ensure the existence of an optimal control. In this work we show that a similar approach can be applied to the hybrid dynamical system. The auxiliary nonlinear optimization problem is slightly different, so that in order to prove the compactness of the feasible set one must use properties of the integral funnel of a control system rather than those of its reachable sets.
Databáze: OpenAIRE