Синтез 3d-динамических систем, имеющих состояния равновесия заданных топологических структур

Jazyk: ruština
Rok vydání: 2013
Předmět:
Zdroj: Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика.
ISSN: 2312-9743
2312-9735
Popis: Рассмотрена задача построения автономных систем обыкновенных дифференциальных уравнений, трёхмерные фазовые пространства которых имеют изолированные состояния равновесия с заданными локальными топологическими структурами. Для решения этой задачи предложен метод, который основан на использовании специальных векторных полей направлений сравнения. При выборе этих векторных полей учитывается, что локальная структура состояния равновесия полностью характеризуется: а) совокупностью особых фазовых траекторий и поверхностей, которые разбивают окрестность состояния равновесия на элементарные области; б) поведением неособых фазовых траекторий в этих областях. Полученные таким образом векторные поля позволяют при определённых условиях представить свойства локальной топологической структуры состояния равновесия в аналитической форме в виде конечных выражений относительно фазовых координат. Эти выражения используются для составления уравнений, число которых равно размерности фазового пространства и которые являются алгебраическими уравнениями относительно правых частей искомой нормальной системы дифференциальных уравнений. Основной целью работы является описание общего подхода к решению поставленной задачи, поэтому её решение рассмотрено только в одном частном случае, когда все элементарные области состояния равновесия искомой динамической системы являются элементарными областями одного из возможных типов. Приведённые в работе теоретические результаты иллюстрируются конкретным примером. Изложенное в данной работе является частичным обобщением ранее опубликованных результатов решения обратных задач теории динамических систем на плоскости.
The problem of synthesis of normal autonomous systems of ordinary differential equations which three-dimensional phase spaces have isolated equilibrium points with desired topological structure properties. To solve this problem a method based on the using special vector fields of comparison directions is proposed. While choosing these vector fields it should be taken into account that the local structure of an isolated equilibrium point is completely characterized by: a) a set of singular phase trajectories and surfaces that break up the neighborhood of the equilibrium point into elementary areas, and b) behavior of non-singular phase trajectories in these areas. Thus obtained vector fields allow, under certain conditions, to present the local topological structure properties of equilibrium point in an analytical form as algebraic expressions with respect to phase coordinates. These expressions are used to set up the equations equal in number to the number of dimensions of the phase space and which are the algebraic equations with respect to the right-hand sides of sought differential equations. The main purpose of the paper is to describe the general approach to the posed problem, so the solution is considered only in one particular case where all the elementary areas of the sought dynamical system equilibrium point are elementary areas of one of the possible types. Theoretical results of the article are illustrated by a concrete example. Presented in this paper is a partial generalization of the previously published results for solving inverse problems of the theory of dynamical systems on the plane.
Databáze: OpenAIRE