Экспериментальное исследование возможностей решения многоэкстремальных задач оптимизации эвристическими методами
Jazyk: | ruština |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Вестник Донского государственного технического университета. |
ISSN: | 1992-6006 1992-5980 |
Popis: | Целью данной работы является исследование актуальной задачи поисковой оптимизации многоэкстремальных объектов, которая существенно сложнее одноэкстремальных задач. Показано, что для достижения поставленной цели пригодны лишь эвристические методы. Поэтому исследуются три наиболее известных и разработанных метода поисковой оптимизации: метод роящихся частиц, эволюционно-генетический подход и муравьиный алгоритм. Анализ проводится в среде общей для всех методов тестовой задачи исследования многоэкстремальной функции Растригина. Показано, что все указанные методы вполне пригодны для решения многоэкстремальных задач. Хотя в каждом из эвристических алгоритмов приходится использовать собственные специфические подходы к решению задачи обнаружения и идентификации локальных экстремумов, их объединяет необходимость осуществления кластеризации данных. Каждый метод может обеспечить любую заданную точность решения экстремальной задачи и использует приемлемый ресурс времени. The work objective is to study a vital task of the multiextremal objects search engine optimization which is much more complicated than monoextremal problems. It is shown that only heuristics is appropriate in achieving this goal. Therefore, three best known and developed search engine optimization techniques are studied: particle swarm method, evolutionary genetic approach, and ant colony algorithm. The analysis is performed in the environment common for all methods of the test research problems of the multiextremal Rastrigin function. It is proved that all these methods are well suited for the multiextremal problem solution. While it is necessary to use proper specific approaches to solving the local extremum detection and identification problem in each of the heuristic algorithms, they all require data clustering. Each method can provide any desired accuracy of the extremum problem solution, and it utilizes an acceptable time resource. |
Databáze: | OpenAIRE |
Externí odkaz: |