Popis: |
Оценки плотности распределения вероятностей в пространствах произвольной природы используют для решения различных задач нечисловой статистики. Систематическое изложение теории таких оценок начато в наших статьях [3, 4], непосредственным продолжением которых является настоящая статья. Регулярно используются ссылки на условия и утверждения из статей [3, 4], в которой введено несколько видов непараметрических оценок плотности вероятности по выборке. Подробнее изучены линейные оценки. В настоящей статье рассмотрим их частные случаи ядерные оценки плотности в дискретных пространствах. При оценивании плотности числовой случайной величины ядерные оценки переходят в оценки Парзена-Розенблатта. При различных условиях доказана состоятельность и асимптотическая нормальность ядерных оценок плотности. Введено понятие "предпочтительный показатель различия" и изучены ядерные оценки плотности на его основе. Введены и изучены естественные меры близости, используемые при анализе асимптотического поведения ядерных оценок плотности. Ядерные оценки плотности рассмотрены для последовательностей пространств с мерами. Найдены условия, при которых разность плотностей распределений вероятностей и математических ожиданий их ядерных оценок равномерно стремится к 0. Установлена равномерная сходимость для дисперсий. Выявлены условия на ядерные функции, при которых имеют место указанные равномерные сходимости. В качестве примеров рассмотрены пространства нечетких подмножеств конечных множеств и пространства всех подмножеств конечных множеств. Найдено условие, обеспечивающее возможность применения ядерных оценок плотности в конечных пространствах. Приведен контрпример пространства ранжировок, в котором применение ядерных оценок плотности нельзя признать корректнымSome estimators of the probability density function in spaces of arbitrary nature are used for various tasks in statistics of non-numerical data. Systematic exposition of the theory of such estimators has been started in our articles [3, 4]. This article is a direct continuation of these works [3, 4]. We will regularly use references to conditions and theorems of the articles [3, 4], in which introduced several types of nonparametric estimators of the probability density. We have studied linear estimators. In this article, we consider particular cases kernel density estimates in discrete spaces. When estimating the density of the one-dimensional random variable, kernel estimators become the Parzen-Rosenblatt estimators. Under different conditions, we prove the consistency and asymptotic normality of kernel density estimators. We have introduced the concept of "preferred rate differences" and are studied nuclear density estimators based on it. We have introduced and studied natural affinity measures which are used in the analysis of the asymptotic behavior of kernel density estimators. Kernel density estimates are considered for sequences of spaces with measures. We give the conditions under which the difference between the densities of probability distributions and of the mathematical expectations of their nuclear estimates uniformly tends to 0. Is established the uniform convergence of the variances. We find the conditions on the kernel functions, in which take place these theorems about uniform convergence. As examples, there are considered the spaces of fuzzy subsets of finite sets and the spaces of all subsets of finite sets. We give the condition to support the use of kernel density estimation in finite spaces. We discuss the counterexample of space of rankings in which the application of kernel density estimators can not be correct |