О скорости сходимости стационарного метода Галеркина для уравнения смешанного типа
Jazyk: | ruština |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование. |
ISSN: | 2308-0256 2071-0216 |
Popis: | В работе изучается краевая задача В.Н. Врагова для уравнения смешанного типа второго порядка, когда уравнение принадлежит эллиптическому типу вблизи оснований цилиндрической области. С помощью стационарного метода Галеркина доказана однозначная регулярная разрешимость краевой задачи при определенных условиях на коэффициенты и правую часть уравнения. При этом установлены априорные оценки для уравнения смешанного типа, которым удовлетворяют приближенные решения. Получена оценка скорости сходимости стационарного метода Галеркина в норме пространства Соболева W 1 2, через собственные функции оператора Лапласа по пространственным переменным и по времени. При выводе оценки скорости сходимости метода Галеркина существенно используется разложение решения исходной краевой задачи в ряд Фурье по собственным функциям оператора Лапласа и известное равенство Парсеваля. In this paper it is investigated the boundary value problem of V.N. Vragov for mixed-type equation of second order, when equation belongs to elliptic type close to the cylindrical base region. Using a stationary Galerkin methods we prove the unique regular solvability of this boundary value problem. It was established a priori estimates for mixed-type equation. It is obtained an estimate for the rate convergence of Galerkin method in the steady-state rate of the Sobolev spaces by eigenfunctions of the Laplace operator in the spatial variables and time. For derivation of the estimate of convergence of stationary Galerkin methods we use the expantion of solution of the initial boundary value problem. |
Databáze: | OpenAIRE |
Externí odkaz: |