О граничном поведении одного класса рядов Дирихле

Jazyk: ruština
Rok vydání: 2016
Předmět:
Zdroj: Чебышевский сборник.
ISSN: 2226-8383
Popis: Исследуется задача аналитического поведения рядов Дирихле,которые имеют ограниченную сумматорную функцию, на оси сходимости а = 0. Ранее эта задача изучалась в работах авторов в случае рядов Дирихле с коэффициентами, которые определяются конечнозначными числовыми характерами, что в свою очередь было связано с решением известной гипотезы Н. Г. Чудакова о том, что конечнозначные числовые характеры, отличные от нуля почти для всех простых р, асимптотика сумматорных функций которых имеет линейный вид, являются характерами Дирихле. Эта гипотеза была высказана в 1950 году и до сих пор окончательно не решена. В одной из работ авторов было получено частичное решение этой гипотезы исходя из поведения соответствующего ряда Дирихле при подходе к мнимой оси. Есть основания полагать, что в этом направлении будет получено окончательное решение гипотезы Н. Г. Чудакова. В нашем случае задача представляет интерес и в связи с получением аналитических условий почти периодичности ограниченной числовой последовательности, отличных от полученных ранее условий. Например, условий Сеге, заключающихся в наличии точек регулярности на границе сходимости соответствующего степенного ряда. Отметим, что в основе исследований лежит, так называемый, метод редукции к степенным рядам, разработанный в начале 80х годов профессором В. Н. Кузнецовым, заключающийся в изучении взаимосвязи между аналитическими свойствами рядов Дирихле и граничным поведением соответсвующих (с теми же коэффициентами, что и у рядов Дирихле) степенных рядов. В данном случае этот метод позволил показать, что все точки мнимой оси являются точками непрерывности в широком смысле для таких рядов Дирихле. Более того, этот метод позволил построить последовательность полиномов Дирихле, сходящихся в любом прямоугольнике, расположенным в критической полосе, к функции, определенной рядом Дирихле.
In this paper we study the problem of analytical behavior of Dirichlet series with a bounded summatory function on its axis of convergence, а = 0. This problem was also considered in the authors’ earlier works in case of Dirichlet series with coefficients determined by finite-valued numerical characters, which, in turn, was connected with a solution for a well-known Chudakov hypothesis. The Chudakov hypothesis suggests that generalized characters, which do not vanish on almost all prime numbers p and asymptotic behavior of whose summatory functions is linear, are Dirichlet characters. This hypothesis was proposed in 1950 and was not completely proven until now. A partial proof based on the behavior of a corresponding Dirichlet series when it approaches to the imaginary axis was obtained in one of authors’ works. There are reasons to anticipate that this approach may eventually lead to a full proof of the Chudakov hypothesis. In our case this problem is particularly interesting in connection with finding analytical conditions of almost periodic behavior of a bounded number sequence, different from those obtained before by various authors, for example, by Szego. Our study is based on a so called method of reduction to power series. This method was developed by Prof. V. N. Kuznetsov in the 1980s and it consists in studying the relation between the analytical properties of Dirichlet series and the boundary behavior of the corresponding (i.e. with the same coefficients) power series. In our case this method of reduction to power series allowed us to show that such Dirichlet series are continuous in the wide sense on the entire imaginary axis. Moreover, this method also helped to construct a sequence of Dirichlet polynomials which converge to a function determined by a Dirichlet series in any rectangle inside the critical strip.
Databáze: OpenAIRE