Фундаментальные функции для обыкновенных дифференциальных уравнений с постоянными коэффициентами и их вейвлет-аппроксимация с учетом специфики строительных задач

Jazyk: ruština
Rok vydání: 2012
Předmět:
Zdroj: Вестник МГСУ.
ISSN: 2304-6600
1997-0935
Popis: Приведено определение фундаментальной функции линейного дифференциального оператора с постоянными коэффициентами, рассмотрен корректный универсальный метод аналитического построения фундаментальных функций, учитывающий особенности краевых задач строительной механики, изложены элементы кратномасштабного вейвлет-анализа с использованием вейвлета Хаара, представлен алгоритм осреднения коэффициентов разложения функции по базису Хаара, описан ряд примеров реализации разложения фундаментальных функций по базису Хаара.
The paper covers the analytical construction of fundamental functions of ordinary differential equations with constant coefficients and their wavelet approximations specific to problems of the structural mechanics. The definition of the fundamental function of an ordinary linear differential equation (operator) with constant coefficients is presented. A correct universal method of analytical construction of the fundamental function in the context of problems of structural analysis is described as well. Several basic elements of the multi-resolution wavelet analysis (basic definitions, wavelet transformations, the Haar wavelet etc.) are considered. Fast algorithms of analysis and synthesis (direct and inverse wavelet transformations) for the Haar basis and a corresponding algorithm of averaging are proposed. It is noteworthy that the algorithms of analysis and synthesis are the relevant constituents of all wavelet-based methods of structural analysis. Moreover, the effectiveness of these algorithms determines the global efficiency of respective methods. A few examples of fundamental functions of ordinary linear differential equations (the problem of analysis of beam, the problem of analysis of the beam resting on the elastic foundation) are presented.
Databáze: OpenAIRE