Тепловая эффективность вихревой интенсификации теплоотдачи газового потока при продольном и поперечном обтекании круглотрубных поверхностей часть 2
Jazyk: | ruština |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. |
ISSN: | 1029-7448 |
Popis: | Показано, что при оценке действительной тепловой эффективности от применения вихревой интенсификации теплоотдачи необходимо учитывать увеличение теплоотдающей площади поверхности трубы соответствующими углублениями (выемками, лунками), которая в зависимости от их геометрических параметров может изменяться от 4 до 280 %, что вызывает повышение теплоотдачи с одновременным ростом ее от турбулизации пограничного слоя потока вихрями, генерируемыми лунковыми турбулизаторами. Для продольно обтекаемой трубы при нанесении выемок на наружной поверхности вихревая интенсификация увеличивает тепловую эффективность до 1,39 раза, а в случае поперечно обтекаемых потоком пучков из облуненной наружной поверхности труб не превышает 29 % при Re = 5000. С ростом числа Re до 14000 энергетический эффект ощутимо снижается до 6 %. Тепловая эффективность вихревой интенсификации сферическими лунками на внутренней поверхности трубы при движении в ней воздуха не превышает 13 % в интервале Re = (1-2) 104, который характерен для воздухоподогревателей паровых котлов. Однако больший энергетический эффект (до 33 %) при продольном течении достигается от появившихся выпуклостей на внутренней поверхности трубы под сферическими углублениями на наружной поверхности. Установлено, что применение дискретной шероховатости в виде поперечных кольцевых выпуклостей (диафрагм) позволяет достичь интенсификации теплоотдачи значительно большей (до 70 %) в интервале Re = (10-100) 103 по сравнению с гладкой трубой. Показано, что физические принципы вихревой интенсификации теплоотдачи облунением круглотрубных поверхностей отличаются от таковых при нанесении искусственной предельной шероховатости в виде усеченных пирамид на наружной поверхности трубы, обтекаемой поперечным потоком. The paper demonstrates the fact that in valuating the actual heat efficiency from utilizing the vortical heat-release intensification it is necessary to account for the increase of heat-releasing area of the tube with the corresponding lacunae (hollows, lunules). It may vary from 4 to 280 % as a function of their geometrical parameters which causes heat-release increasing with its simultaneous growth from vortex formation in the boundary-layer flow by the swirls generated by lunule turbulizers. For the tube of axial flow-around with hollows applied on the outer surface the vortex intensification enhances the thermal effectiveness up to 1,39 times, and in the case of the transversal flow-around tube banks with lunuled tube outer surface it does not exceed 29 % at Re = 5000. With Re number growing to 14000 the energy effect tangibly declines to 6 %. The thermal effectiveness of the vortex intensification with spherical lunules on the tube inside surface and the air moving inside does not exceed 13 % in the interval Re = (1-2) 104, which is distinctive for air the preheaters of steam-boilers. However, a greater energy effect (up to 33 %) for the axial flowing is attained from emerging saliences on the tube inside surface beneath the spherical lacunae on the outside. The authors establish that employing discrete roughness in the form of transverse circular saliences (diaphragms) allows attaining much greater heat-emission intensification (up to 70 %) in the interval of Re = (10-100) 103 as compared to the smooth tube. The paper shows that physical principles of the heat-emission vortex intensification by way of lunuling the round tubular surfaces differentiate from those applying artificial limited roughness in the form of pyramid frusta on the tube outside surfaces flowed around by the transverse flow. |
Databáze: | OpenAIRE |
Externí odkaz: |