PLSA efficiency improvement based on initialization and approximation
Autor: | Avanesov, V., Kozlov, I. |
---|---|
Jazyk: | ruština |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Вестник Новгородского государственного университета им. Ярослава Мудрого. |
ISSN: | 2076-8052 |
Popis: | Probabilistic Latent Semantic Analysis (PLSA) is an effective technique for information retrieval, but it has a serious drawback: it consumes a huge amount of computational resources, so it is hard to train this model on a large collection of documents. The aim of this paper is to improve time efficiency of the training algorithm. Two different approaches are explored: one is based on efficient finding of an appropriate initial approximation; the idea of another is that for the most of collection topics may be extracted from relatively small fraction of the data. |
Databáze: | OpenAIRE |
Externí odkaz: |