Methodology for inventory planning of returnable transport items in a beverage distribution network

Autor: Ardila Gamboa, César David
Přispěvatelé: Ballesteros Riveros, Frank Alexander, Javier Arturo Orjuela Castro, Carlos Alberto González Camargo
Jazyk: Spanish; Castilian
Rok vydání: 2018
Předmět:
Zdroj: Accorsi, R., Cascini, A., Cholette, S., Manzini, R., & Mora, C. (2014). Economic and environmental assessment of reusable plastic containers: A food catering supply chain case study. International Journal of Production Economics, 152, 88-101.
Agrawal, S., Singh, R. K., & Murtaza, Q. (2015). A literature review and perspectives in reverse logistics. Resources, Conservation and Recycling, 97, 76-92.
Agrawal, S., Singh, R. K., & Murtaza, Q. (2016a). Outsourcing decisions in reverse logistics: sustainable balanced scorecard and graph theoretic approach. Resources, Conservation and Recycling, 108, 41-53.
Agrawal, S., Singh, R. K., & Murtaza, Q. (2016b). Disposition decisions in reverse logistics: Graph theory and matrix approach. Journal of Cleaner Production, 137, 93-104.
Alshamsi, A., & Diabat, A. (2015). A reverse logistics network design. Journal of Manufacturing Systems, 37(3), 589-598.
Bahiraei N., Panjehfouladgaran H. &Yusuff R. M. (2015) Ranking of critical success factors in reverse logistics by TOPSIS. Industrial Engineering and Operations Management (IEOM) International Conference. 1-5.
Bahl, H., Ritzman, L., & Jatinder N. D. Gupta. (1987). Determining Lot Sizes and Resource Requirements: A Review. Operations Research, 35(3), 329-345.
Bansia, M., Varkey, J. K., & Agrawal, S. (2014). Development of a Reverse Logistics Performance Measurement System for a battery manufacturer. Procedia Materials Science, 6, 1419-1427.
Battini, D., Bogataj, M., & Choudhary, A. (2017). Closed Loop Supply Chain (CLSC): Economics, Modelling, Management and Control. Journal of Production Economics. Special Issue. 319-321.
Bazan, E., Jaber, M. Y., & Zanoni, S. (2016). A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective. Applied Mathematical Modelling, 40(5), 4151-4178.
Bhattacharjee, S., & Cruz, J. (2015). Economic sustainability of closed loop supply chains: A holistic model for decision and policy analysis. Decision Support Systems, 77, 67-86.
Bhattacharya, R., & Kaur, A. (2015). Allocation of external returns of different quality grades to multiple stages of a closed loop supply chain. Journal of Manufacturing Systems, 37, 692-702.
Botha, A., Grobler, J., & Yadavalli, V. S. (2017). System dynamics comparison of three inventory management models in an automotive parts supply chain. Journal of Transport and Supply Chain Management, 11(1), 1-12.
Bottani, E., Montanari, R., Rinaldi, M., & Vignali, G. (2015). Modeling and multi-objective optimization of closed loop supply chains: a case study. Computers & Industrial Engineering, 87, 328-342.
Boussellaa, A., & Abed, M. (2016). Object-oriented modeling and design of reverse logistics management system using UML. In Smart Cities and Green ICT Systems (SMARTGREENS), 2016 5th International Conference on (pp. 1-8). IEEE.
Brandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299-312.
Brandenburg, M., & Rebs, T. (2015). Sustainable supply chain management: A modeling perspective. Annals of Operations Research, 229(1), 213-252
Butzer, S., Schötz, S., Petroschke, M., & Steinhilper, R. (2017). Development of a Performance Measurement System for Int. Reverse Supply Chains. Procedia CIRP, 61, 251-256.
Cabral, J. D. D., & de Araújo, S. A. (2015). An intelligent vision system for detecting defects in glass products for packaging and domestic use. The International Journal of Advanced Manufacturing Technology, 77(1-4), 485-494.
Chang Q. Q. & Zheng H. Z. (2014). An effective strategy for non-defective reverse logistics. Information and Automation (ICIA) IEEE International Conference.1273-1277.
Chen, A. P. (2014). Study on the Supply Chain of Reverse Logistics Inventory Strategy under a Consistent Cycle. In Applied Mechanics and Materials (Vol. 608, pp. 261-264). Trans Tech Publications.
Cobb, B. R. (2016). Inventory control for returnable transport items in a closed-loop supply chain. Transportation Research Part E: Logistics and Transportation Review, 86, 53-68.
Council of Supply Chain Management Professionals (2013). CSCMP Glossary.
Daaboul, J., Le Duigou, J., Penciuc, D., & Eynard, B. (2014). Reverse logistics network design: a holistic life cycle approach. Journal of Remanufacturing, 4(1), 7.
Daugherty, P. J., Autry, C. W., & Ellinger, A. E. (2001). Reverse logistics: The relationship between resource commitment and program performance. Journal of Business Logistics, 22(1), 107-124
Das K. (2012) Integrating reverse logistics into the strategic planning of a supply chain. Int. Journal of Production Research, 50(5), 1438–1456.
Das, D., & Dutta, P. (2013). A system dynamics framework for integrated reverse supply chain with three way recovery and product exchange policy. Computers & Industrial Engineering, 66(4), 720-733.
De Giovanni, P. (2016). State-and control-dependent incentives in a closed-loop supply chain with dynamic returns. Dynamic Games and Applications, 6(1), 20-54.
Dixit, S., & Badgaiyan, A. J. (2016). Towards improved understanding of reverse logistics–Examining mediating role of return intention. Resources, Conservation and Recycling, 107, 115-128.
Dondo, R. G., & Méndez, C. A. (2016). Operational planning of forward and reverse logistic activities on multi-echelon supply-chain networks. Computers & Chemical Engineering, 88, 170-184.
Drake, M. J., & Marley, K. A. (2014). A Century of the EOQ. In Handbook of EOQ Inventory Problems (pp. 3-22). Springer, Boston, MA.
Dubey, R., Gunasekaran, A., Papadopoulos, T., Childe, S. J., Shibin, K. T., & Wamba, S. F. (2017). Sustainable supply chain management: framework and further research directions. Journal of Cleaner Production, 142, 1119-1130.
Dutta, P., Das, D., Schultmann, F., & Fröhling, M. (2016). Design and planning of a closed-loop supply chain with three way recovery and buy-back offer. Journal of Cleaner Production, 135, 604-619.
El Saadany, A. M., Jaber, M. Y., & Bonney, M. (2013). “How many times to remanufacture?”. International Journal of Production Economics, Vol. 143(2), págs. 598-604.
Elia, V., & Gnoni, M. G. (2015). Designing an effective closed loop system for pallet management. International Journal of Production Economics, 170, 730-740.
Emrouznejad, A., & Mustafa, A. (2012). Fuzzy data envelopment analysis: A discrete approach. Expert Systems with Applications, 39(3), 2263-2269.
Fallah, H., Eskandari, H., & Pishvaee, M. S. (2015). Competitive closed-loop supply chain network design under uncertainty. Journal of Manufacturing Systems, 37, 649-661.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253-290.
Feng, Z., Wang, Z., & Chen, Y. (2014). The equilibrium of closed-loop supply chain supernetwork with time-dependent parameters. Transportation Research Part E: Logistics and Transportation Review, 64, 1-11.
Gaur, J., Subramoniam, R., Govindan, K., & Huisingh, D. (2017). Closed-loop supply chain management: From conceptual to an action oriented framework on core acquisition. Journal of Cleaner Production, 167, 1415-1424.
Genc, T. S., & De Giovanni, P. (2017). Trade-in and save: A two-period closed-loop supply chain game with price and technology dependent returns. International Journal of Production Economics, 183, 514-527.
Glock, C. (2017) “Decision support models for managing returnable transport items in supply chains: A systematic literature review”. International Journal of Production Economics. Vol. 183(B), pág. 561–569.
Golroudbary, S. R., & Zahraee, S. M. (2015). System dynamics model for optimizing the recycling and collection of waste material in a closed-loop supply chain. Simulation Modelling Practice and Theory, 53, 88-102.
Gonçalves, M., & Silva, Â. M. (2016). Reverse logistics: systematic literature review vs companies’ perspective. International Journal of Engineering and Industrial Management, (6), 67-86.
Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603-626.
Guarnieri, P., e Silva, L. C., & Levino, N. A. (2016). Analysis of electronic waste reverse logistics decisions using Strategic Options Development Analysis methodology: A Brazilian case. Journal of Cleaner Production, 133, 1105-1117.
Guo, X., & Yu, Y. (2017). Dynamic warehouse size planning with demand forecast and contract flexibility. International Journal of Production Research, 1-13.
Gutiérrez V. & Vidal C. J. (2008). Modelos de Gestión de Inventarios en Cadenas de Abastecimiento: Revisión de la Literatura. Rev. Fac. Ing. Univ. Antioquia N.° 43. pp. 134-149.
Haghighi, S. M., Torabi, S. A., & Ghasemi, R. (2016). An integrated approach for performance evaluation in sustainable supply chain networks (with a case study). Journal of Cleaner Production, 137, 579-597.
He, Y. (2015). Acquisition pricing and remanufacturing decisions in a closed-loop supply chain. International Journal of Production Economics, 163, 48-60.
Hernández-Sampieri, R., Fernández-Collado, C., & Baptista-Lucio, P. (2010). Metodología de la investigación. México, DF.
Hernandez-Hernandez, H. J., Montoya-Torres, J. R., & Niebles-Atencio, F. (2014). Design of multi-product/multi-period closed-loop reverse logistics network using a genetic algorithm. In Computational Intelligence in Production and Logistics Systems (CIPLS), 2014 IEEE Symposium on (pp. 40-47). IEEE.
Hong, X., Govindan, K., Xu, L., & Du, P. (2017). Quantity and collection decisions in a closed-loop supply chain with technology licensing. European Journal of Operational Research, 256(3), 820-829.
Hosoda, T., & Disney, S. M. (2017). A unified theory of the dynamics of closed-loop supply chains. European Journal of Operational Research.
Huscroft, J. R., Hazen, B. T., Hall, D. J., & Hanna, J. B. (2013). Task-technology fit for reverse logistics performance. International Journal of Logistics Management, 24(2). 230-246.
Huynh, C. H., So, K. C., & Gurnani, H. (2016). Managing a closed-loop supply system with random returns and a cyclic delivery schedule. European Journal of Operational Research, 255(3), 787-796.
Iassinovskaia, G., Limbourg, S., & Riane, F. (2017). The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains. International Journal of Production Economics, 183, 570-582.
Jami, N., Schröder, M., & Küfer, K. H. (2016). A model and polynomial algorithm for purchasing and repositioning containers. IFAC-PapersOnLine, 49(2), 48-53.
Jiang Y. & Zheng H. (2014). A construction method of enterprise reverse logistics based on bilateral resource integration. Information and Automation (ICIA) IEEE International Conference. 1268-1272.
Jeihoonian, M., Zanjani, M. K., & Gendreau, M. (2017). Closed-loop supply chain network design under uncertain quality status: Case of durable products. International Journal of Production Economics, 183, 470-486.
Kim, T., Glock, C. H., & Kwon, Y. (2014). A closed-loop supply chain for deteriorating products under stochastic container return times. Omega, 43, 30-40.
Ko, Y. D., Noh, I., & Hwang, H. (2012). Cost benefits from standardization of the packaging glass bottles. Computers & Industrial Engineering, 62(3), 693-702.
Krikke, H., Hofenk, D., & Wang, Y. (2013). Revealing an invisible giant: A comprehensive survey into return practices within original (closed-loop) supply chains. Resources, Conservation and Recycling, 73, 239-250.
Kumar, V. N. S. A., Kumar, V., Brady, M., Garza-Reyes, J. A., & Simpson, M. (2017). Resolving forward-reverse logistics multi-period model using evolutionary algorithms. International Journal of Production Economics, 183, 458-469.
Kumar, M., Tiwari, M. K., Wong, K. Y., Govindan, K., & Kuah, C. T. (2014). Evaluating reverse supply chain efficiency: manufacturer’s perspective. Mathematical Problems in Engineering, 2014.
Lee, C. M., Woo, W. S., & Roh, Y. H. (2017). Remanufacturing: Trends and issues. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 113-125.
Lieder, M., Asif, F. M., Rashid, A., Mihelič, A., & Kotnik, S. (2017). Towards circular economy implementation in manufacturing systems using a multi-method simulation approach to link design and business strategy. The International Journal of Advanced Manufacturing Technology, 93(5-8), 1953-1970.
Lieckens, K. & Vandaele, N. (2012). Multi-level reverse logistics network design under uncertainty. International Journal of Production Research. 50(1). 23-40.
Ma, J., & Kremer, G. E. O. (2016). A systematic literature review of modular product design (MPD) from the perspective of sustainability. The International Journal of Advanced Manufacturing Technology, 86(5-8), 1509-1539.
Mangla, S. K., Govindan, K., & Luthra, S. (2016). Critical success factors for reverse logistics in Indian industries: a structural model. Journal of Cleaner Production, 129, 608-621.
McDonald, C. M. (2016). Integrating packaging and supply chain decisions: Selection of economic handling unit quantities. International Journal of Production Economics, 180, 208-221.
Meng X. & Jiang H. (2009). The Construction of Reverse Logistics Network about the Reusable Packages, 2009 International Conference on Measuring Technology and Mechatronics Automation, 698-701.
Mensendiek, A. (2015). Scheduling with returnable containers. Journal of Scheduling, 18(6), 593-605.
Miao, Z., Fu, K., Xia, Z., & Wang, Y. (2017). Models for closed-loop supply chain with trade-ins. Omega, 66, 308-326.
Mirhedayatian, S. M., Azadi, M., & Saen, R. F. (2014). A novel network data envelopment analysis model for evaluating green supply chain management. International Journal of Production Economics, 147, 544-554.
Mittal, N., Boile, M., Baveja, A., & Theofanis, S. (2013). Determining optimal inland-empty-container depot locations under stochastic demand. Research in Transportation Economics, 42(1), 50-60.
Niero, M., & Hauschild, M. Z. (2017). Closing the Loop for Packaging: Finding a Framework to Operationalize Circular Economy Strategies. Procedia CIRP, 61, 685-690.
Pandian, G. R. S., & Abdul-Kader, W. (2017). Performance evaluation of reverse logistics enterprise–an agent-based simulation approach. International Journal of Sustainable Engineering, 1-15.
Park, S., & Kim, D. S. (2015). Container fleet-sizing for part transportation and storage in a two-level supply chain. Journal of the Operational Research Society, 66(9), 1442-1453.
Parvini, M., Atashi, A., Husseini, S. M. M., & Esfahanipour, A. (2014). A two-echelon inventory model with product returns considering demands dependent return rates. The International Journal of Advanced Manufacturing Technology, 72(1-4), 107-118.
Peng, Y., & Zhao, Y. (2015). Comparative research on operation models of reverse logistics. In Industrial Engineering and Engineering Management (IEEM), 2015 IEEE International Conference on (pp. 504-508). IEEE.
Poles, R. (2013). System Dynamics modelling of a production and inventory system for remanufacturing to evaluate system improvement strategies. International Journal of Production Economics, 144(1), 189-199.
Ramírez, A. M., & Morales, V. J. G. (2014). Improving organisational performance through reverse logistics. Journal of the Operational Research Society, 65(6), 954-962
Reefke, H., & Sundaram, D. (2017). Key themes and research opportunities in sustainable supply chain management–identification and evaluation. Omega, 66, 195-211.
Roy, D., Carrano, A. L., Pazour, J. A., & Gupta, A. (2016). Cost-effective pallet management strategies. Transportation Research Part E: Logistics and Transportation Review, 93, 358-371.
Salviano, O., & Andres, F. (2015). On an Optimal Production-Inventory Plan for a Closed Loop Supply Chain. IFAC-PapersOnLine. Volume 50:1. 4987-4993
Salviano, O., & Andres, F. (2017). On Long-Term Optimal Production-Inventory Plan for a Closed Loop Supply Chain.
Sangwan, K. S. (2017). Key Activities, Decision Variables and Performance Indicators of Reverse Logistics. Procedia CIRP, 61, 257-262.
Sarkar B., Ullah M., Kim N. (2017) Environmental and economic assessment of closed-loop supply chain with remanufacturing and returnable transport items. Computers & Industrial Engineering. Vol. 111, págs. 148–163.
Schenkel, M., Caniëls, M. C., Krikke, H., & van der Laan, E. (2015). Understanding value creation in closed loop supply chains–Past findings and future directions. Journal of manufacturing systems, 37, 729-745.
Schenkel, M., Krikke, H., Caniëls, M. C., & van der Laan, E. (2015). Creating integral value for stakeholders in closed loop supply chains. Journal of Purchasing and Supply Management, 21(3), 155-166.
Shaharudin, M. R., Govindan, K., Zailani, S., Tan, K. C., & Iranmanesh, M. (2017). Product return management: Linking product returns, closed-loop supply chain activities and the effectiveness of the reverse supply chains. Journal of Cleaner Production, 149, 1144-1156.
Shaik, M. N., & Abdul-Kader, W. (2014). Comprehensive performance measurement and causal-effect decision making model for reverse logistics enterprise. Computers & Industrial Engineering, 68, 87-103.
Shankar, R., Bhattacharyya, S., & Choudhary, A. (2018). A decision model for a strategic closed-loop supply chain to reclaim End-of-Life Vehicles., 195, 273-286.
Shi X., Li L.X., Yang L., Li Z. & Choi J. (2012). Information flow in reverse logistics: an industrial information integration study. Information Technology and Management, 13(4), 217–232.
Shteren, H., & Avrahami, A. (2017). The Value of Inventory Accuracy in Supply Chain Management-Case Study of the Yedioth Communication Press. Journal of Theoretical and Applied Electronic Commerce Research, 12(2), 71-86.
Silva Filho, O. S., & Salviano, I. R. (2014). Choosing an optimal return rate and a reverse logistics policy from the solution of a constrained LQG problem. IFAC Proceedings Volumes, 47(3), 8927-8932.
Simon, B., Amor, M. B., & Földényi, R. (2016). Life cycle impact assessment of beverage packaging systems: focus on the collection of post-consumer bottles. Journal of Cleaner Production, 112, 238-248.
Soheilirad, S., Govindan, K., Mardani, A., Zavadskas, E. K., Nilashi, M., & Zakuan, N. (2017). Application of data envelopment analysis models in supply chain management: a systematic review and meta-analysis. Annals of Operations Research, 1-55.
Soysal, M. (2016). Closed-loop Inventory Routing Problem for returnable transport items. Transportation Research Part D: Transport and Environment, 48, 31-45.
Sterman, J. D. (2000). Business dynamics: systems thinking and modeling for a complex world (No. HD30. 2 S7835 2000).
Sudarto, S., Takahashi, K., & Morikawa, K. (2017). Reprint "Efficient flexible long-term capacity planning for optimal sustainability dimensions performance of reverse logistics social responsibility: A system dynamics approach". International Journal of Production Economics, 190, 45-59.
Tolio, T., Bernard, A., Colledani, M., Kara, S., Seliger, G., Duflou, J. & Takata, S. (2017). Design, management and control of demanufacturing and remanufacturing systems. CIRP Annals-Manufacturing Technology, 66(2), 585-609.
Tu C. C., Chang S. H., Tu C. J. & Lee A. C. H. (2010) Study of the performance of reverse logistics for supply chain management. IEEM, IEEE International Conference. 2323-2327.
Vanderroost, M., Ragaert, P., Verwaeren, J., De Meulenaer, B., De Baets, B., & Devlieghere, F. (2017). The digitization of a food package’s life cycle: Existing and emerging computer systems in the logistics and post-logistics phase. Computers in Industry, 87, 15-30.
Vieira, P. F., Vieira, S. M., Gomes, M. I., Barbosa-Póvoa, A. P., & Sousa, J. M. (2015). Designing closed-loop supply chains with nonlinear dimensioning factors using ant colony optimization. Soft Computing, 19(8), 2245-2264.
Wang, G., & Gunasekaran, A. (2017). Modeling and analysis of sustainable supply chain dynamics. Annals of Operations Research, 250(2), 521-536.
Wang, J., Zhao, J., & Wang, X. (2011). Optimum policy in hybrid manufacturing/remanufacturing system. Computers & Industrial Engineering, 60(3), 411-419.
Wei, L. & Gu, W. (2015). Decision-making on reverse logistics for manufacturers: an evolutionary game theory perspective. 2015 International Conference on Logistics, Informatics and Service Sciences (LISS), Barcelona, 2015, pp. 1-6.
Ya-Ping C. (2012) Cost and Benefit Analysis of Reverse Logistics. 2012 Second International Conference on Business Computing and Global Informatization.75-77.
Yang, T., Fu, C., Liu, X., Pei, J., Liu, L., & Pardalos, P. M. (2015). Closed-loop supply chain inventory management with recovery information of reusable containers. Journal of Combinatorial Optimization, 1-27.
Yanikara, F. S., & Kuhl, M. E. (2015). A simulation framework for the comparison of reverse logistic network configurations. In Winter Simulation Conference (WSC), 2015 (pp. 979-990). IEEE.
Zerhouni, H., Gayon, J. P., & Frein, Y. (2013). Influence of dependency between demands and returns in a reverse logistics system. International Journal of Production Economics, 143(1), 62-71.
Zhang, C. (2016). Small and medium-sized enterprises closed-loop supply chain finance risk based on evolutionary game theory and system dynamics. Journal of Shanghai Jiaotong University (Science), 21(3), 355-364.
Zhang, D. Z. (2013). An integrated production and inventory model for a whole manufacturing supply chain involving reverse logistics with finite horizon period. Omega, 41(3), 598-620.
Zhang, Q., Segerstedt, A., Tsao, Y. C., & Liu, B. (2015). Returnable packaging management in automotive parts logistics: Dedicated mode and shared mode. International Journal of Production Economics, 168, 234-244.
Zupan, H., Debevec, M., & Herakovic, N. (2017). Inventories in the Warehouse-Monitoring, Analyses and Optimization with Simulation. Acta Technica Corvininesis-Bulletin Of Engineering, 10(2).
Popis: Introducción: La logística inversa es una serie de procesos donde productos, materiales y otros recursos se recuperan de los clientes y vuelven a la empresa. Los ítems de transporte retornables son ampliamente utilizados para soportar las operaciones de logística inversa en cadenas de abastecimiento de ciclo cerrado en empresas y organizaciones y proyectar y planear el comportamiento de estos inventarios facilita su control y mejora su desempeño. El análisis envolvente de datos se aplica para medir la eficiencia relativa de escenarios de planeación. Objetivo: Aplicar una metodología de planeación de ítems de transporte retornables, con un enfoque de simulación con dinámica de sistemas, para la toma de decisiones basada en proyecciones del comportamiento del sistema productivo, permitiendo la continuidad de la operación en empresas productoras y distribuidoras de bebidas. Método: A partir de una revisión de la literatura y el marco contextual de una empresa productora y distribuidora de bebidas, se analizan las variables involucradas para diseñar, estructurar y aplicar una metodología de planeación de inventarios para ítems de transporte retornables, con la novedad de contemplar dos niveles: botellas y cajas. Se recopilan datos para las variables de entrada del modelo de dinámica de sistemas basado en el software Vensim, se proyecta el comportamiento del sistema y calculan 8 indicadores de desempeño en 24 escenarios. Se evalúa la efectividad de la metodología a través de la comparación de los indicadores de desempeño mediante la técnica de análisis envolvente de datos. Resultados: Se definen las variables de la planeación de inventarios para los ítems de transporte retornables, se recopilan los datos y se integran al modelo de dinámica de sistemas y se calculan indicadores para cada escenario. El modelo de análisis envolvente de datos se ejecuta y se determinan las eficiencias relativas para cada escenario. Se realiza un análisis de frontera y se analizan las variables a través de un análisis de sensibilidad. Se identifican 5 variables clave que incrementan el desempeño de los escenarios hasta en un 10% de eficiencia relativa. Conclusiones: La planeación de ítems de trasporte retornables y la logística inversa ofrece numerosas ventajas en empresas de diferentes sectores. El enfoque en dinámica de sistemas facilita el diseño, integrando 84 variables en un modelo de planeación. El modelo permite simular el comportamiento del sistema en el tiempo, obteniendo indicadores de desempeño que evalúan el sistema en un horizonte de tiempo. El modelo de análisis envolvente de datos identifica qué escenarios tienen un rendimiento relativo superior, y facilita a los gerentes de logística tomar decisiones informadas sobre las variables del sistema. TABLA DE CONTENIDO VI LISTA DE TABLAS IX LISTA DE FIGURAS 1 RESUMEN 2 ABSTRACT 3 CAPÍTULO 1 INTRODUCCIÓN 4 1.1. Objetivos 5 1.1.1. Objetivo General 5 1.1.2. Objetivos Específicos 5 1.2. Justificación 6 1.3. Planteamiento del Problema 7 1.3.1. Análisis Causa - Efecto 8 1.3.2. Análisis DOFA 9 1.4. Hipótesis y preguntas de investigación 11 1.5. Alcance y delimitaciones 12 1.6. Impacto del proyecto 12 CAPÍTULO 2 METODOLOGÍA 13 2.1. Diseño metodológico 13 2.1.1. Tipo de estudio 13 2.1.2. Participantes de la investigación 14 2.1.3. Herramientas, aparatos, materiales o instrumentos 14 2.1.4. Método de análisis e interpretación de los datos 15 2.1.5. Etapas del proyecto 15 2.2. Metodología de desarrollo del proyecto 16 2.2.1. Variables del modelo de planeación 16 2.2.2. Resultados esperados 16 2.2.3. Cronograma del proyecto 17 CAPÍTULO 3 ANTECEDENTES Y ESTADO DEL ARTE 18 3.1. Conceptos consultados 18 3.2. Administración de la cadena de abastecimiento (SCM) 20 3.2.1. Procesos logísticos en la cadena de abastecimiento 21 3.2.2. Factores críticos de éxito de la administración de la cadena de abastecimiento 25 3.2.3. Evolución a la administración de cadenas de abastecimiento sostenibles 27 3.2.4. Industrias y sostenibilidad 30 3.3. Logística inversa en cadenas de abastecimiento de bucle o ciclo cerrado (CLSC) 31 3.3.1. El retorno como principal entrada de las CLSC 32 3.3.2. La recuperación como núcleo de las CLSC 34 3.3.3. Factores críticos de éxito de una CLSC 37 3.4. Ítems de transporte retornables (RTI) 37 3.4.1. Administración de los RTI 38 3.4.2. Administración del ciclo de vida de los RTI 39 3.4.3. Diseño de productos basados en RTI 40 3.5. Modelos para la planeación de inventarios de cadenas de abastecimiento con logística inversa. 41 3.5.1. Historia de los modelos matemáticos para la planeación 42 3.5.2. Modelos según su objetivo 42 3.5.3. Modelos según su metodología 43 3.5.4. Análisis de la literatura según sus variables 46 CAPÍTULO 4 MARCO DE REFERENCIA 52 4.1. Antecedentes del proyecto 52 4.1.1. Modelo de planeación de envases retornables 52 4.1.2. Modelo operativo de botellas retornables (por CD) 53 4.1.3. Modelo operativo de requerimientos de cajas plásticas 53 4.2. Marco contextual 53 4.2.1. Características del producto, el embalaje retornable y el consumidor 53 4.2.2. Proceso de planeación 55 4.2.3. Características del diseño de la red 60 4.2.4. Procesos de Logística Inversa 61 4.2.5. Plan de abastecimiento 62 CAPÍTULO 5 RESULTADOS 64 5.1. Entregables del marco teórico y contextual 64 5.2. Documentación del diseño de la metodología y herramienta de planeación funcional 64 5.2.1. Parámetros del modelo 69 5.2.2. Variables Intervinientes 76 5.2.3. Variables Dependientes 81 5.2.4. Indicadores de desempeño 85 5.2.5. Diseño del modelo DEA 87 5.3. Diseño de la Metodología de Planeación 88 5.3.1. Identificación de las variables relevantes del sistema 89 5.3.2. Recolección de datos históricos y proyectados para las variables de entrada 89 5.3.3. Integración de los datos recopilados a la metodología 90 5.3.4. Recopilación de resultados 91 5.3.4.1. Revisión de la coherencia de los resultados 91 5.3.5. Prueba y Error para identificación de variables en búsqueda de mejoramiento 92 5.3.6. Aplicación del modelo DEA para comparar resultados 92 5.3.7. Análisis de Sensibilidad sobre las variables modificadas 92 5.3.8. Conclusiones de la aplicación de la metodología 93 5.4. Protocolo con el paso a paso de la aplicación de la metodología 93 5.4.1. Recolección de datos 94 5.4.2. Integración de los datos recopilados a la metodología 96 5.4.3. Recopilación de resultados 98 5.5. Metodología aplicada, resultados del modelo 99 5.5.1. Aplicación del modelo DEA 100 5.5.2. Análisis de Sensibilidad y de frontera eficiente 103 5.5.3. Conclusiones de la aplicación del modelo DEA 104 5.6. Propuesta de implementación 105 5.6.1. Objetivo general de la implementación 106 5.6.2. Objetivos específicos de la implementación 106 5.6.3. Aceptación de la propuesta 106 CAPÍTULO 6 CONCLUSIONES Y RECOMENDACIONES 108 BIBLIOGRAFÍA 112 APÉNDICE 1 120 ANEXO 1 121 ANEXO 2 122 Introduction: Reverse logistics is a series of processes through which products, materials and other resources are recovered from customers and returned to the company. Returnable transport items are widely used to support reverse logistics operations conforming closed-loop supply chains in companies and organizations, and projecting and planning of the behavior of these inventories improves their control and performance. Data envelopment analysis is applied to measure the relative efficiency of planning scenarios. Objective: To apply a planning methodology for returnable transport items, using a simulation approach with systems dynamics, for decision making based on projections of the behavior of the productive system, allowing the continuity of the operation in companies producing and distributing beverages. Method: From a literature review and the context of a company that produces and distributes beverages, variables are identified and used for the design, structure and application of a methodology for inventory planning for returnable transport items in two levels (bottles and crates). Data is collected for the input variables of the system dynamics model based on the software Vensim, the system behavior is projected and 8 performance indicators are calculated through 24 scenarios. The effectiveness of the methodology is evaluated through the comparison of the performance indicators through the technique of data envelopment analysis. Results: The inventory planning variables are defined for returnable transport items, the data are collected and integrated into the system dynamics model and indicators are calculated for each scenario. The data envelopment analysis model is executed and the relative efficiencies are determined for each scenario. A frontier analysis is carried out and the variables are analyzed through a sensitivity analysis. Five key variables are identified that increase the performance of the scenarios up to 10% of relative efficiency. Conclusions: The planning of returnable transport items and reverse logistics offers numerous advantages in companies from different sectors. The focus on systems dynamics facilitates the design of the planning model, integrating 84 variables. The model allows to simulate the behavior of the system over time, obtaining performance indicators that evaluate the system in a time horizon. The data envelopment analysis model identifies which scenarios have a higher relative performance, and makes it easier for logistics managers to make informed decisions about the system’s variables.
Databáze: OpenAIRE