Autor: |
Willis, Ryan M., Pollman, Anthony G., Gannon, Anthony J., Hernandez, Alejando |
Přispěvatelé: |
Graduate School of Engineering and Applied Sciences |
Rok vydání: |
2019 |
Popis: |
Liquid Air Energy Storage (LAES) is a potential solution to mitigate renewable energy intermittency on islanded microgrids. Renewable microgrid generation in excess of the immediate load runs a cryogenic cycle to create and store liquid air. LAES systems can be combined with an expansion turbine to recover the stored energy. Using analytic methods to design a LAES and expansion system is complex and time consuming, suggesting modeling and simulation as a more efficient approach. Aspen HYSYS, an industrial process modeling software package, was used to model a combined Linde- Hampson cryogenic cycle (for liquefaction of air) and an expansion cycle (to convert the energy from liquid air vaporization to mechanical energy). The model was validated against previous analytic work. The validated model will be used to implement a model-based systems engineering (MBSE) approach to design an LAES and expansion system to reduce intermittency on an experimental microgrid at the Naval Postgraduate School in Monterey, CA, USA. Data from this facility will be used to further modify and validate the HYSYS model. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|