Machine learning based dynamic frequency and bandwidth allocation in self-organized LTE dense small cell deployments

Autor: Bojovic, Biljana, Meshkova, Elena, Baldo, Nicola, Riihijärvi, Janne, Petrova, Marina
Rok vydání: 2016
Předmět:
Popis: Self-organizing networks (SONs) are expected to minimize operational and capital expenditure of the operators while improving the end users’ quality of experience. To achieve these goals, the SON solutions are expected to learn from the environment and to be able to dynamically adapt to it. In this work, we propose a learning-based approach for self-optimization in SON deployments. In the proposed approach, the learning capability has the central role to perform the estimation of key performance indicators (KPIs) which are then exploited for the selection of the optimal network configuration. We apply this approach to the use case of dynamic frequency and bandwidth assignments (DFBA) in long-term evolution (LTE) residential small cell network deployments. For the implementation of the learning capability and the estimation of KPIs, we select and investigate various machine learning and statistical regression techniques. We provide a comprehensive analysis and comparison of these techniques evaluating the different factors that can influence the accuracy of the KPI predictions and consequently the performance of the network. Finally, we evaluate the performance of learning-based DFBA solution and compare it with the legacy approach and against an optimal exhaustive search for best configuration. The results show that the learning-based DFBA achieves on average a performance improvement of 33 % over approaches that are based on analytical models, reaching 95 % of the optimal network performance while leveraging just a small number of network measurements.
Databáze: OpenAIRE