Improved bounds on Brun's constant

Autor: Platt, Dave, Trudgian, Tim
Přispěvatelé: Bailey, David H, Borwein, Naomi Simone, Brent, Richard P, Burachik, Regina S, Osborn, Judy-anne Heather, Sims, Brailey, Zhu, Qiji J
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Platt, D & Trudgian, T 2020, Improved bounds on Brun's constant . in D H Bailey, N S Borwein, R P Brent, R S Burachik, J H Osborn, B Sims & Q J Zhu (eds), From Analysis to Visualization : A Celebration of the Life and Legacy of Jonathan M. Borwein, Callaghan, Australia, September 2017 . vol. 313, Springer Proceedings in Mathematics and Statistics, vol. 313, Springer-Verlag Berlin, pp. 395-406 . https://doi.org/10.1007/978-3-030-36568-4
DOI: 10.1007/978-3-030-36568-4
Popis: Brun’s constant is B = Pp∈P2p−1 + (p + 2)−1, where the summation is over all twin primes. We improve the unconditional bounds on Brun’s constant to 1.840503 < B < 2.288490, which are about 13% tighter.
Databáze: OpenAIRE