Popis: |
Доведено можливість інтегрального зображення додатно визначеного ядра від двох пар змінних. Використано техніку побудови за цим ядром нового гільбертового простору, у якому формально комутують симетричні диференціальні оператори. При цьому ядро задовольняє систему диференціальних рівнянь із частинними похідними. Відомо, що ядро, задане в підобласті дійсної площини, не завжди припускає продовження на всю площину. Така можливість зумовлена проблемою існування комутувального самоспряженого розширення симетричних операторів. Застосовано результати, отримані автором, пов’язані з комутувальним самоспряженим розширенням у більш широкому гільбертовому просторі. Одержане інтегральне зображення за спектральною мірою, породженою розкладом одиниці операторів, дає змогу продовження додатно визначеного ядра на всю площину. The paper proposes proof of the possibility of an integral representation of a positive definite kernel of two pairs of variables. Using this kernel, we use the technique of constructing a new Hilbert space in which symmetric differential operators formally commute. In this case, the kernel satisfies a system of differential equations with partial derivatives. It is known that a kernel given in a subdomain of the real plane, generally speaking, does not always imply an extension to the entire plane. This possibility is related to the problem of the existence of a commuting selfadjoint extension of symmetric operators. The author applies his own results related to a commuting self-adjoint extension in a wider Hilbert space. The resulting representation in the form of an integral of elementary positive-definite kernels with respect to the spectral measure generated by the resolution of the identity of the operators allows us to extend the positive-definite kernel to the entire plane. |