Structuration and mechanical properties of gels made from gluten proteins
Autor: | Dahesh, Mohsen, Banc, Amélie, Duri-Bechemilh, Agnès, Morel, Marie Helene, RAMOS, Laurence |
---|---|
Přispěvatelé: | Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | International soft matter conference (ISMC) International soft matter conference (ISMC), Sep 2013, Rome, Italy. 2013 |
Popis: | Wheat gluten proteins are among the most complex protein networks in nature, due in particular to their poor solubility in water and to their viscoelastic behavior. Gluten networks are often considered as transient networks comprising extensible biopolymer segments of flexible or semiflexible chains between junction points. However, the exact structure of the network, the nature of the junction points and the way it get structured under shear remain to be clarified. Here we report the visco-elastic behavior of model systems composed of gluten proteins near gelation. We build model systems by dispersing in ethanol-water mixtures two major protein groups, gliadins and glutenins, that we have purified from gluten. Rheological properties show a slow evolution over time scales of the order of days of the linear frequency dependence complex modulus of the samples, with a concentration-dependent liquid to solid transition. Interestingly, we find that all data acquired at different protein concentrations and different times after sample preparation can be scaled onto a master curve showing a cross-over from a soft solid behavior at low frequency to a visco-elastic fluid at high frequency.Rheological data are completed by scattering experiments in order to elucidate the complex structure of the materials. For gel samples, the scattering profiles display at small length scales features typical of polymer and evidences at larger length scale a fractal structure that we interpret as being due to the highly disordered state of the junction points. Biochemical assays are also performed to elucidate the origin of the sample aging. |
Databáze: | OpenAIRE |
Externí odkaz: |