Modèles de séries temporelles à mémoire longue avec innovations dépendantes

Autor: Esstafa, Youssef
Přispěvatelé: Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Université Bourgogne Franche-Comté, Bruno Saussereau, Yacouba Boubacar Mainassara
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Statistics [math.ST]. Université Bourgogne Franche-Comté, 2019. English. ⟨NNT : 2019UBFCD021⟩
Popis: We first consider, in this thesis, the problem of statistical analysis of FARIMA (Fractionally AutoRegressive Integrated Moving-Average) models endowed with uncorrelated but non-independent error terms. These models are called weak FARIMA and can be used to fit long-memory processes with general nonlinear dynamics. Relaxing the independence assumption on the noise, which is a standard assumption usually imposed in the literature, allows weak FARIMA models to cover a large class of nonlinear long-memory processes. The weak FARIMA models are dense in the set of purely non-deterministic stationary processes, the class of these models encompasses that of FARIMA processes with an independent and identically distributed noise (iid). We call thereafter strong FARIMA models the models in which the error term is assumed to be an iid innovations.We establish procedures for estimating and validating weak FARIMA models. We show, under weak assumptions on the noise, that the least squares estimator of the parameters of weak FARIMA(p,d,q) models is strongly consistent and asymptotically normal. The asymptotic variance matrix of the least squares estimator of weak FARIMA(p,d,q) models has the "sandwich" form. This matrix can be very different from the asymptotic variance obtained in the strong case (i.e. in the case where the noise is assumed to be iid). We propose, by two different methods, a convergent estimator of this matrix. An alternative method based on a self-normalization approach is also proposed to construct confidence intervals for the parameters of weak FARIMA(p,d,q) models.We then pay particular attention to the problem of validation of weak FARIMA(p,d,q) models. We show that the residual autocorrelations have a normal asymptotic distribution with a covariance matrix different from that one obtained in the strong FARIMA case. This allows us to deduce the exact asymptotic distribution of portmanteau statistics and thus to propose modified versions of portmanteau tests. It is well known that the asymptotic distribution of portmanteau tests is correctly approximated by a chi-squared distribution when the error term is assumed to be iid. In the general case, we show that this asymptotic distribution is a mixture of chi-squared distributions. It can be very different from the usual chi-squared approximation of the strong case. We adopt the same self-normalization approach used for constructing the confidence intervals of weak FARIMA model parameters to test the adequacy of weak FARIMA(p,d,q) models. This method has the advantage of avoiding the problem of estimating the asymptotic variance matrix of the joint vector of the least squares estimator and the empirical autocovariances of the noise.Secondly, we deal in this thesis with the problem of estimating autoregressive models of order 1 endowed with fractional Gaussian noise when the Hurst parameter H is assumed to be known. We study, more precisely, the convergence and the asymptotic normality of the generalized least squares estimator of the autoregressive parameter of these models.; Dans cette thèse nous considérons, dans un premier temps, le problème de l'analyse statistique des modèles FARIMA (Fractionally AutoRegressive Integrated Moving-Average) induits par un bruit blanc non corrélé mais qui peut contenir des dépendances non linéaires très générales. Ces modèles sont appelés FARIMA faibles et permettent de modéliser des processus à mémoire longue présentant des dynamiques non linéaires, de structures souvent non-identifiées, très générales. Relâcher l'hypothèse d'indépendance sur le terme d'erreur, une hypothèse habituellement imposée dans la littérature, permet aux modèles FARIMA faibles d'élargir considérablement leurs champs d'application en couvrant une large classe de processus à mémoire longue non linéaires. Les modèles FARIMA faibles sont denses dans l'ensemble des processus stationnaires purement non déterministes, la classe formée par ces modèles englobe donc celle des processus FARIMA avec un bruit indépendant et identiquement distribué (iid). Nous appelons par la suite FARIMA forts les modèles dans lesquels le terme d'erreur est supposé être un bruit iid.Nous établissons les procédures d'estimation et de validation des modèles FARIMA faibles. Nous montrons, sous des hypothèses faibles de régularités sur le bruit, que l'estimateur des moindres carrés des paramètres des modèles FARIMA(p,d,q) faibles est fortement convergent et asymptotiquement normal. La matrice de variance asymptotique de l'estimateur des moindres carrés des modèles FARIMA(p,d,q) faibles est de la forme "sandwich". Cette matrice peut être très différente de la variance asymptotique obtenue dans le cas fort (i.e. dans le cas où le bruit est supposé iid). Nous proposons, par deux méthodes différentes, un estimateur convergent de cette matrice. Une méthode alternative basée sur une approche d'auto-normalisation est également proposée pour construire des intervalles de confiance des paramètres des modèles FARIMA(p,d,q) faibles. Cette technique nous permet de contourner le problème de l'estimation de la matrice de variance asymptotique de l'estimateur des moindres carrés.Nous accordons ensuite une attention particulière au problème de la validation des modèles FARIMA(p,d,q) faibles. Nous montrons que les autocorrélations résiduelles ont une distribution asymptotique normale de matrice de covariance différente de celle obtenue dans le cadre des FARIMA forts. Cela nous permet de déduire la loi asymptotique exacte des statistiques portmanteau et de proposer ainsi des versions modifiées des tests portmanteau standards de Box-Pierce et Ljung-Box. Il est connu que la distribution asymptotique des tests portmanteau est correctement approximée par un khi-deux lorsque le terme d'erreur est supposé iid. Dans le cas général, nous montrons que cette distribution asymptotique est celle d'une somme pondérée de khi-deux. Elle peut être très différente de l'approximation khi-deux usuelle du cas fort. Nous adoptons la même approche d'auto-normalisation utilisée pour la construction des intervalles de confiance des paramètres des modèles FARIMA faibles pour tester l'adéquation des modèles FARIMA(p,d,q) faibles. Cette méthode a l'avantage de contourner le problème de l'estimation de la matrice de variance asymptotique du vecteur joint de l'estimateur des moindres carrés et des autocovariances empiriques du bruit.Dans un second temps, nous traitons dans cette thèse le problème de l'estimation des modèles autorégressifs d'ordre 1 induits par un bruit gaussien fractionnaire d'indice de Hurst H supposé connu. Nous étudions, plus précisément, la convergence et la normalité asymptotique de l'estimateur des moindres carrés généralisés du paramètre autorégressif de ces modèles.
Databáze: OpenAIRE