Heat and Mass Transfer in an Area with Moving Borders

Autor: Kirillov, V.V.
Rok vydání: 2017
Předmět:
Popis: Кириллов Валерий Владимирович, доктор технических наук, профессор кафедры «Двигатели летательных аппаратов», Южно-Уральский государственный университет, г. Челябинск, valery.v.kirillov@gmail.com. V.V. Kirillov, valery.v.kirillov@gmail.com South Ural State University, Chelyabinsk, Russian Federation В различных областях науки и техники необходимо рассчитывать процессы переноса тепла в областях различной формы, границы которых изменяются с течением времени. К ним относятся задачи типа Стефана о промерзании грунта и кристаллизации слитка, для которых при определённых допущениях удаётся получить аналитическое решение. Далее появились работы по расчёту температурного поля в шашках горящего топлива, термическому разложению твёрдых составов, плавлению, абляции теплозащитных покрытий. Математические модели таких процессов включают в себя уравнение теплопроводности, начальные и граничные условия, а также условия перемещения границ. Вместе с тем существуют задачи, связанные с расчётом процессов тепло- и массообмена при течении жидкости и газа в областях, границы которых перемещаются с течением времени. Математические модели таких задач включают в себя системы уравнений в частных производных, решение которых возможно только численными методами. В данной работе предлагается эффективный численный метод решения таких задач на основе метода конечных разностей, который позволяет отслеживать положение границ области при существенном их перемещении на адаптивной разностной сетке. Various fields of science and technology require calculations of heat transfer processes in regions of different shapes, the boundaries of which move with time. These are such tasks as a Stefan problem of ground freezing and ingot crystallization, which can be solved analytically under certain assumptions. Later appeared works on calculating the temperature field in burning fuel grains, thermal decomposition of solid mixtures, melting and ablation of heat-resistant coatings. Mathematical models of such processes include the heat equation, initial and boundary conditions, as well as the conditions of boundary displacement. At the same time, there are tasks associated with the calculation of heat and mass transfer processes, when liquid and gas flow in the regions, the boundaries of which move with time. Mathematical models of such problems in clude systems of partial differential equations, which can be solved only by numerical methods. This paper proposes an effective numerical method for solving such problems on the basis of the finite difference method, which allows tracking the position of region boundaries when they considerably move on the adaptive computational mesh.
Databáze: OpenAIRE