Popis: |
Шориков Андрей Федорович, д-р физ.-мат. наук, профессор кафедры прикладной математики Уральского энергетического института, Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, г. Екатеринбург; afshorikov@mail.ru. Калёв Виталий Игоревич, аспирант кафедры прикладной математики Уральского энергетического института, Уральский федеральный университет им. первого Президента России Б.Н. Ельцина; инженер-конструктор отдела управления движением, АО «НПО автоматики им. академика Н.А. Семихатова», г. Екатеринбург; v.i.kalev@urfu.ru. A.F. Shorikov1, afshorikov@mail.ru, V.I. Kalev1,2, v.i.kalev@urfu.ru 1 Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation, 2 JSC “Scientific and Production Association of automatics named after academician N.A. Semikhatov”, Ekaterinburg, Russian Federation Предлагается алгоритм решения задачи управления расходом топлива жидкостной двигательной установки первой ступени ракеты-носителя, в котором эта задача формулируется как задача оптимального адаптивного терминального управления для соответствующей линейной дискретной динамической системы. Для этого исходная нелинейная непрерывная система, описывающая динамику объекта управления, линеаризуется относительно заданной опорной траектории и затем дискретизируется согласно требованиям к процессу управления, в результате чего сформированная аппроксимирующая модель представляет собой систему векторно-матричных рекуррентных соотношений. В аппроксимирующей системе учитываются все ограничения, наложенные на фазовый вектор и вектор управления, и, кроме того, предполагается, что эти ограничения имеют вид выпуклых, замкнутых и ограниченных многогранников с конечным числом вершин в соответствующих векторных пространствах. В работе формулируются задачи оптимального программного и адаптивного терминального управления для сформированной линейной дискретной динамической системы. На основе решения конечной последовательности задач оптимального программного терминального управления для аппроксимирующей линейной модели предлагается рекуррентный алгоритм оптимального адаптивного терминального управления исходной нелинейной динамической системой. При реализации алгоритма оптимального программного терминального управления используется аппарат построения и анализа областей достижимости, реализованный при помощи общего алгебраического рекуррентного метода построения областей достижимости линейных дискретных динамических систем с несколькими его модификациями, направленными в основном на снижение вычислительной сложности и, как следствие, на увеличение его быстродействия. Эффективность разработанного алгоритма оптимального адаптивного терминального управления демонстрируется на численном модельном примере оптимизации адаптивного управления расходом топлива жидкостной двигательной установки первой ступени ракеты- носителя. In this paper we propose the algorithm of launch vehicle’s liquid propulsion system propellant consumption control problem solving, in which this problem is formulated as the optimal closed- loop terminal control problem for corresponding linear discrete-time dynamical system. To achieve this, initial nonlinear continuous model, which describes the plant dynamics, is linearized along given reference trajectory and then is discretized in accordance to control process requirements. As the result of this, we have formed approximating model represented as the vector-matrix system of recurrence equations. The constraints of state vector and control vector are also taken into account in this approximating system, and we assume that the constraints are convex, closed and limited polyhedra with finite number of vertices in corresponding vector spaces. The optimal open-loop and closed- loop terminal control problems are formulated for generated linear discrete-time dynamical system. For solving the problems the optimal closed-loop terminal control recurrence algorithm is developed, which consists in the solving of number of optimal open-loop terminal control problems for linear discrete-time dynamical system. Based on solution of finite sequence of optimal open-loop terminal control problem for linear approximate model we provide recurrence optimal closed-loop terminal control algorithm for initial nonlinear dynamical system. In the implementation of proposed optimal open-loop control algorithm we use the tool of reachable sets computation and analysis based on general algebraic recurrence approach for linear discrete-time dynamical systems and some modifications of this approach intended for reducing the computational complexity and consequently to increasing the operation speed. The performance of developed optimal closed-loop terminal control algorithm is presented on numerical model example of launch vehicle’s first stage liquid propulsion system propellant consumption closed-loop control optimization. Работа выполнена при финансовой поддержке РФФИ (проект № 18-01-00544). |