The Workflow Automation System for Magnetorheological Control Device
Autor: | Naigert, K.V., Rednikov, S.N. |
---|---|
Rok vydání: | 2016 |
Předmět: |
дифференциальный манометр
workflow automation УДК 681.5 автоматизация рабочих процессов differential pressure gauge throttling devices magnetorheological actuators the temperature control of working fluid магнитореологические дросселирующие устройства автоматизированные системы магнитореологический дроссель тензометрический мост магнитореологические приводы strain gauge bridge magnetorheological control devices термостатирование рабочей среды magnetorheological fluid control orifices магнитореологический управляющий контур automated systems |
Popis: | Найгерт Катарина Валерьевна, соискатель кафедры «Гидравлика и гидропневмосистемы», Южно-Уральский государственный университет, г. Челябинск, kathy_naigert@mail.ru. Редников Сергей Николаевич, кандидат технических наук, доцент кафедры «Гидравлика и гидропневмосистемы», Южно-Уральский государственный университет, г. Челябинск, srednikov@mail.ru. K.V. Naigert, kathy_naigert@mail.ru, S.N. Rednikov, srednikov@mail.ru South Ural State University, Chelyabinsk, Russian Federation Анализируются элементы магнитореологических приводных систем. Рассматривается способ регулирования расхода в управляющей магнитореологической линии при помощи магнитореологического дросселирующего устройства и приводится метод автоматизации рабочего процесса магнитореологического дросселирующего устройства. Описывается способ реализации передачи управляющего сигнала и организации обратной связи по давлению. Приводится способ расчета управляющего сигнала контроллером и пример управляющего алгоритма. В тексте приводятся принципиальные электрические схемы управления рабочим процессом магнитореологического дросселирующего устройства, позволяющие применять подобные магнитореологические дросселирующие устройства в приводах автоматических и мехатронных систем. Также приведен способ осуществления регулирования рабочих процессов магнитореологического дросселирующего устройства при помощи включения в систему дифференциального манометра. Описывается функциональная схема реализации работы тензодатчика разности давления. Авторы предлагают принципиальную гидравлическую компоновочную схему для включения магнитореологического дросселирующего устройства в управляющий магнитореологический контур, предусматривающую термостатирование рабочей среды и позволяющую производить температурное дорегулирование реологических свойств рабочей жидкости. Приведен способ реализации проточного термостатирования рабочей среды магнитореологической системы. Рассматриваются особенности управления системами термостатирования, созданными на безе термоэлектрических полупроводниковых элементов. Описываются преимущества применения предложенной системы. Приводятся статические характеристики дросселирующего устройства, работающего в автоматическом режиме поддержания требуемых расходных характеристик. Производится анализ результатов натурного эксперимента и проводится их сопоставление с результатами численного моделирования рабочего процесса магнитореологического дросселирующего устройства. Эффективность предложенной системы автоматизации рабочего процесса магнито-реологического дросселирующего устройства подтверждается полученными результатами численного моделирования и натурного эксперимента.The article analyzes the elements of the magnetorheological drive systems. It is examining the way of the regulating of discharge in the control flow path by means of magnetorheological control device and is provided the method of workflow automation for magnetorheological control device. It describes the ways to implement the transmission of control signals and reverse communication by pressure. It presents the method for the calculation of control signal by microcontroller and the example of one control algorithm. The text covers the electrical schematic circuit diagram for workflow of magnetorheological control device; this allows the use of the magnetorheological control devices in the actuators of automatic and mechatronic systems. It describes the way to implement the workflow of magnetorheological control devices by means of differential pressure gauge. It also describes a functional scheme the operation of the differential pressure gauge. The authors offer the hydraulic schematic circuit diagram to include the magnetorheological control device in the control magnetorheological flow path with the thermostatic system which allows the temperature regulation of the rheological properties of magnetorheological fluid. It presents the method to implement the temperature control of working fluid in the magnetorheological systems. It is discussed the features of thermostatic control systems which is established on the basis of hermoelectric semiconductor elements. It describes the advantages of the using of proposed system. It shows the static characteristics of the magnetorheological control devices in automatic modeof fixed flow characteristics. It is analyzed the results of field experiment and made a comparison with the results of numerical modeling of workflow for magnetorheological control devices. The effectiveness of a method of workflow automation of the magnetorheological control device is confirmed with calculations and experiments. |
Databáze: | OpenAIRE |
Externí odkaz: |