Popis: |
Full waveform inversion (FWI) is a data-fitting technique capable of generating high-resolution velocity models with a resolution down to half the seismic wavelength. FWI is applied typically to densely sampled seismic data. In this study, we applied FWI to 3D wide-angle seismic data acquired using sparsely spaced ocean bottom seismometers (OBSs) from the Deep Galicia Margin west of Iberia. Our dataset samples the S-reflector, a low-angle detachment present in this area. Here we highlight differences between 2D, 2.5D and 3D-FWI performances using a real sparsely spaced dataset. We performed 3D FWI in the time domain and compared the results with 2D and 2.5D FWI results from a profile through the 3D model. When overlaid on multichannel seismic images, the 3D FWI results constrain better the complex faulting within the pre- and syn-rift sediments and crystalline crust compared to the 2D result. Furthermore, we estimate variable serpentinisation of the upper mantle below the S-reflector along the profile using 3D FWI, reaching a maximum of 45 per cent. Differences in the data residuals of the 2D, 2.5D and 3D inversions suggest that 2D inversion can be prone to overfitting when using a sparse dataset. To validate our results, we performed tests to recover the anomalies introduced by the inversions in the final models using synthetic datasets. Based on our comparison of the velocity models, we conclude that the use of 3D data can partially mitigate the problem of receiver sparsity in FWI. |