Popis: |
Extrinsic sensor calibration is crucial in operating a robot and is needed for several functionalities, such as sensor data fusion, 3D reconstruction, and SLAM. Although various state-of-the-art approaches exist to tackle this problem, the majority focus on a pairwise calibration, i.e., the calibration between two sensors. In a system with more than a pair of sensors, the number of calibrations increases, creating a tedious and unoptimised procedure. To solve this, the Laboratório de Automação e Robótica at the University of Aveiro developed a calibration tool named ATOM. This approach formulates the calibration problem as an extended optimisation problem in which the poses of the sensors and the poses of the calibration pattern are estimated. These poses are retrieved by the combination of geometric transformations, named atomic transformations, due to their indivisibility. This allows for a generalisation of the calibration problem, making the approach viable for every robotic system and every multiple configurations. Calibration w.r.t. the motion coordinate frame is a sensor to frame calibration w.r.t. the robot frame. This robot frame is moving w.r.t. the odom frame, which is a world-fixed frame computed based on an odometry source. This calibration allows for a near-global placement of the robot’s sensors, which allows for object and environment positioning w.r.t. the robot. The author argues that ATOM’s mathematical formulation can be used in this type of calibration due to its broad and general nature. Therefore, this dissertation focus on developing tools to test the proposed approach in simulated and real environments. Results show that a successful proof of concept of this approach was proven in a simulated environment, achieving results comparable with normal calibration in ATOM. On the real environment, result were unsatisfactory due to external reason, such as uncalibrated odometry parameters. A calibração extrínseca de sensores é crucial na operação de um robot e é necessária para várias funcionalidades, tais como fusão de dados de sensores, reconstrução 3D e SLAM. Embora existam várias abordagens de última geração para resolver este problema, a maioria concentra-se numa calibração em pares, ou seja, a calibração entre dois sensores. Num sistema com mais do que um par de sensores, o número de calibrações aumenta, criando um procedimento enfadonho e não optimizado. Para resolver este problema, o Laboratório de Automação e Robótica da Universidade de Aveiro desenvolveu uma ferramenta de calibração chamada ATOM. Esta abordagem for mula o problema de calibração como um problema de optimização alargado em que se estimam as poses dos sensores e as poses do padrão de calibração. Estas poses são obtidas pela combinação de transformações geométricas, denominadas transformações atómicas, devido à sua indivisibilidade. Isto permite uma generalização do problema de calibração, tornando a abordagem viável para todos os sistemas robóticos e todas as configurações dos mesmos. A calibração em relação ao referencial de movimento é uma calibração em relação ao referencial do robot. Este referencial está a mover-se em relação ao referencial odom, um referencial global calculado a partir de uma fonte de odometria. Esta calibração permite uma colocação quase global do veículo robótico, o que permite o posicionamento de objectos e do ambiente em relação ao robot. O autor argumenta que a formulação da ATOM pode ser usada neste tipo de calibração, devido `a sua natureza ampla e geral. Portanto, esta dissertação concentra-se no desenvolvimento de ferramentas para testar a abordagem proposta em ambientes simulados e reais. Os resultados mostram que uma boa prova de conceito desta abordagem foi alcançada num ambiente simulado, obtendo resultados comparáveis com a calibração normal do ATOM. No ambiente real, os resultados foram insatisfatório devido a razões externas, tais como parâmetros de odometria não calibrados. |