Numerical and combinatorial applications of generalized Appell polynomials
Autor: | Cruz, Carla Maria |
---|---|
Přispěvatelé: | Malonek, Helmuth, Falcão, Maria Irene Ferrão de Carvalho Ribeiro Almeida |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Homogeneous holomorphic polynomials
Funções de variáveis complexas Transformações quase-conformes Vandermonde matrices Generalized Joukowski transformation Generalized powers Funções holomorfas hipercomplexas Pseudo-complex powers Matrizes de Vandermonde Totally regular variables Potências pseudo-complexas Generalized Appell polynomials Matemática Funções holomórficas Clifford holomorphic functions Variáveis totalmente regulares Polinómios complexos Combinatorial identities Quasiconformal mappings Pascal n-simplex with hypercomplex entries Polinómios de Appell generalizados N-simplex de Pascal com entradas hipercomplexas Potências generalizadas Polinómios homogéneos holomorfos Identidades combinatórias Transformações de Joukowski generalizadas |
Popis: | Doutoramento em Matemática This thesis studies properties and applications of different generalized Appell polynomials in the framework of Clifford analysis. As an example of 3D-quasi-conformal mappings realized by generalized Appell polynomials, an analogue of the complex Joukowski transformation of order two is introduced. The consideration of a Pascal n-simplex with hypercomplex entries allows stressing the combinatorial relevance of hypercomplex Appell polynomials. The concept of totally regular variables and its relation to generalized Appell polynomials leads to the construction of new bases for the space of homogeneous holomorphic polynomials whose elements are all isomorphic to the integer powers of the complex variable. For this reason, such polynomials are called pseudo-complex powers (PCP). Different variants of them are subject of a detailed investigation. Special attention is paid to the numerical aspects of PCP. An efficient algorithm based on complex arithmetic is proposed for their implementation. In this context a brief survey on numerical methods for inverting Vandermonde matrices is presented and a modified algorithm is proposed which illustrates advantages of a special type of PCP. Finally, combinatorial applications of generalized Appell polynomials are emphasized. The explicit expression of the coefficients of a particular type of Appell polynomials and their relation to a Pascal simplex with hypercomplex entries are derived. The comparison of two types of 3D Appell polynomials leads to the detection of new trigonometric summation formulas and combinatorial identities of Riordan-Sofo type characterized by their expression in terms of central binomial coefficients. Esta tese estuda propriedades e aplicações de diferentes polinómios de Appell generalizados no contexto da análise de Clifford. Exemplificando uma transformação realizada por polinómios de Appell generalizados, é introduzida uma transformação análoga à transformação de Joukowski complexa de ordem dois. A análise de um n- simplex de Pascal com entradas hipercomplexas permite sublinhar a relevância combinatória de polinómios hipercomplexos de Appell. O conceito de variáveis totalmente regulares e a sua relação com polinómios de Appell generalizados conduz à construção de novas bases para o espaço dos polinómios homogéneos holomorfos cujos elementos são todos isomorfos às potências inteiras da variável complexa. Por este motivo, tais polinómios são chamados de potências pseudo-complexas (PCP). Diferentes variantes de PCP são objeto de uma investigação detalhada. É dada especial atenção aos aspectos numéricos de PCP. Um algoritmo eficiente baseado em aritmética complexa é proposto para a sua implementação. Neste contexto, é apresentado um breve resumo de métodos numéricos para inverter matrizes de Vandermonde e é proposto um algoritmo modificado para ilustrar as vantagens de um tipo especial de PCP. Finalmente, são enfatizadas aplicações combinatórias de polinómios de Appell generalizados. A expressão explícita dos coeficientes de um tipo particular de polinómios de Appell e a sua relação com um simplex de Pascal com entradas hipercomplexas são obtidas. A comparação de dois tipos de polinómios de Appell tridimensionais leva à deteção de novas fórmulas envolvendo somas trigonométricas e de identidades combinatórias do tipo de Riordan – Sofo, caracterizadas pela sua expressão em termos de coeficientes binomiais centrais. |
Databáze: | OpenAIRE |
Externí odkaz: |