Popis: |
We investigated the effects of various heavy metals such as copper, zinc and cadmium, as well as acute thermal stress, on the signalling mechanisms involved in the protection and/or apoptosis of Mytilus galloprovincialis mantle and gill tissues. The results of our studies revealed that mantle and gill tissues differentially respond to the stressful stimuli examined. In the mantle tissue, 1 μmol l-1 Cu2+ and 50 μmol l-1 Zn2+ induced a transient p38-MAPK activation, whereas 1 μmol l-1 Cd2+ induced a biphasic profile of the kinase phosphorylation with maximal values at 15 and 120 min of treatment, respectively. Furthermore, 1 μmol l-1 SB203580 abolished the Cu2+-induced kinase phosphorylation. In gills, both Cu2+ and Zn2+ induced a considerably higher p38-MAPK activation, which remained elevated for at least 60 min, whereas Cd2+ induced a maximal kinase activation within 60 min of treatment. Hypothermia (4°C) induced a moderate kinase phosphorylation (maximised at 30 min), whereas hyperthermia (30°C) induced a rapid (within 15 min) p38-MAPK phosphorylation that remained considerably above basal levels for at least 2 h. Our studies on the synergistic effect of hyperthermia and Cu2+ revealed that these two stressful stimuli are additive in the mantle tissue, inducing an almost double p38-MAPK activation. Further studies on the involvement of the p38-MAPK signalling pathway in tissue-specific pro- or anti-apoptotic events revealed that identical stressful stimuli possibly lead to apoptotic death via the caspase-3 activation in the mantle tissue and to anti-apoptotic events possibly via the induction of Hsp70 overexpression in the gill tissue. |