Taux d'échappement dans les systèmes dynamiques bruités

Autor: Demaeyer, Jonathan
Přispěvatelé: Gaspard, Pierre, Tlidi, Mustapha, Bricmont, Jean, De Decker, Yannick, Knaepen, Bernard, Gilbert, Thomas
Jazyk: francouzština
Rok vydání: 2013
Předmět:
Popis: The escape of trajectories is a ubiquitous phenomenon in open dynamical systems and stochastic processes. If escape occurs repetitively for a statistical ensemble of trajectories, the population of remaining trajectories often undergoes an exponential decay characterised by the so-called escape rate. Its inverse defines the lifetime of the decaying state, which represents an intrinsic property of the system. This paradigm is fundamental to nucleation theory and reaction-rate theory in chemistry, physics, and biology.In many circumstances, escape is activated by the presence of noise, which may be of internal or external origin. This is the case for thermally activated escape over a potential energy barrier and, more generally, for noise-induced escape in continuous-time or discrete-time dynamics. In the weak-noise limit, the escape rate is often observed to decrease exponentially with the inverse of the noise amplitude, a behaviour which is given by the van't Hoff-Arrhenius law of chemical kinetics. In particular, the two important quantities to determine in this case are the exponential dependence (the ``activation energy') and its prefactor.The purpose of the present thesis is to develop an analytical method to determine these two quantities. We consider in particular one-dimensional continuous and discrete-time systems perturbed by Gaussian white noise and we focus on the escape from the basin of attraction of an attracting fixed point.In both classes of systems, using path-integral methods, a formula is deduced for the noise-induced escape rate from the attracting fixed point across an unstable fixed point, which forms the boundary of the basin of attraction. The calculation starts from the trace formula for the eigenvalues of the operator ruling the time evolution of the probability density in noisy maps. The escape rate is determined by the loop formed by two heteroclinic orbits connecting back and forth the two fixed points in a two-dimensional auxiliary deterministic dynamical system. The escape rate is obtained, including the expression of the prefactor to van't Hoff-Arrhenius exponential factor./L'échappement des trajectoires est un phénomène omniprésent dans les systèmes dynamiques ouverts et les processus stochastiques. Si l'échappement se produit de façon répétitive pour un ensemble statistique de trajectoires, la population des trajectoires restantes subit souvent une décroissance exponentielle caractérisée par le taux d'échappement. L'inverse du taux d'échappement définit alors la durée de vie de l'état transitoire associé, ce qui représente une propriété intrinsèque du système. Ce paradigme est fondamental pour la théorie de la nucléation et, de manière générale, pour la théorie des taux de transitions en chimie, en physique et en biologie.Dans de nombreux cas, l'échappement est induit par la présence de bruit, qui peut être d'origine interne ou externe. Ceci concerne en particulier l'échappement activé thermiquement à travers une barrière d'énergie potentielle, et plus généralement, l'échappement dû au bruit dans les systèmes dynamiques à temps continu ou à temps discret.Dans la limite de faible bruit, on observe souvent une décroissance exponentielle du taux d'échappement en fonction de l'inverse de l'amplitude du bruit, un comportement qui est régi par la loi de van't Hoff-Arrhenius de la cinétique chimique. En particulier, les deux quantités importantes de cette loi sont le coefficient de la dépendance exponentielle (c'est-à-dire ``l'énergie d'activation') et son préfacteur.L'objectif de cette thèse est de développer une théorie analytique pour déterminer ces deux quantités. La théorie que nous présentons concerne les systèmes unidimensionnels à temps continu ou discret perturbés par un bruit blanc gaussien et nous considérons le problème de l'échappement du bassin d'attraction d'un point fixe attractif. Pour s'échapper, les trajectoires du système bruité initialement contenues dans ce bassin d'attraction doivent alors traverser un point fixe instable qui forme la limite du bassin.Dans le présent travail, et pour les deux types de systèmes, une formule est dérivée pour le taux d'échappement du point fixe attractif en utilisant des méthodes d'intégrales de chemin. Le calcul utilise la formule de trace pour les valeurs propres de l'opérateur gouvernant l'évolution temporelle de la densité de probabilité dans le système bruité. Le taux d'échappement est déterminé en considérant la boucle formée par deux orbites hétéroclines liant dans les deux sens les deux points fixes dans un système dynamique auxiliaire symplectique et bidimensionnel. On obtient alors le taux d'échappement, comprenant l'expression du préfacteur de l'exponentielle de la loi de van't Hoff-Arrhenius.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Databáze: OpenAIRE