The impact of extraction temperature and solution concentration on the antioxidant activity of sweet cherry seeds’ extracts

Autor: Dulyanska, Y., Cunha, Margarida, Lima, M. J., Correia, Paula, Ferreira, Manuela, Fragata, Anabela, Cardoso, Ana Paula, Barroca, Maria João, Silva, A., Cruz-Lopes, Luísa, Esteves, Bruno, Ferreira, José, Domingos, Idalina, Guiné, Raquel P. F.
Jazyk: angličtina
Rok vydání: 2022
Popis: Sweet cherry seeds, a valuable lignin-cellulose raw material for the production of polyurethane foams 1, are also a significant source of different phenolic compounds 2 and can be a good source of natural antioxidants, which can play an important role in preventing the formation of free radicals and protection against degenerative diseases. Considering sustainability, the main objective of this project was the use of cherry by-products (seeds) to produce extracts rich in antioxidant compounds. In this work, the seed extracts were obtained with the addition of different combinations of ethanolic solution (water:ethanol ratios - 50:50; 60:40; 80:20; 100:0 v:v) and at different temperatures (35, 50, 70 and 80 °C), all under magnetic stirring for 40 minutes. Then, the antioxidant activity of the extracts was evaluated through spectrophotometric methods, using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid)) radicals, and also the Ferric Reducing Antioxidant Power Assay (FRAP). All measurements were replicated at least in triplicates and were expressed as mg Trolox equivalents per gram (mg TE/g). Statistical analysis was performed using the JAVA software. ANOVA tests show that there is a statistically significant effect of temperature, water percentage and temperature on the antioxidant activity evaluated by the three methods used (p> 0.001 in all tests). The percentage of water is the variable that most contributes to this effect. Individual Post Hoc comparisons show, for all tests, that in general the temperatures induce differences in antioxidant activity, except 70 °C and 80 °C in DPPH and FRAP, and 80 °C and 50 °C in ABTS. Regarding the percentage of water, it was found that all samples are different from each other, except the FRAP, in which no significant differences between 50 and 60% of water were found. In conclusion, no major differences between the ABTS, DPPH and FRAP methods were found. Temperature and percentage of water have a significant effect on the concentration of antioxidant activity in all methods. In that way, the cherry pit is a good by-product to produce extracts with high content of antioxidant activity, being that the 70° C with 50:50 and 60:40 water:ethanol solutions are the most favorable conditions to potentiate the antioxidant activity. info:eu-repo/semantics/publishedVersion
Databáze: OpenAIRE