Classification of patterns with use of intelligent methods

Autor: Berus, Lucijano
Přispěvatelé: Klančnik, Simon
Jazyk: slovinština
Rok vydání: 2017
Předmět:
Zdroj: Maribor
Popis: Magistrsko delo obravnava področje umetne inteligence, strojnega učenja, razvrščanja kompleksnih vzorcev in metode določitve značilk. Predstavljeno je delovanje nekaterih najpogosteje uporabljenih razvrščevalnih algoritmov. Izdelan je bil algoritem za zaznavo Parkinsonove bolezni na podlagi zajetega zvočnega signala. Meritve zvoka so bile narejene na štiridesetih posameznikih. Od tega je bila polovica zdravih in polovica z Parkinsonovo boleznijo. Namen naloge je razviti robusten sistem za zaznavo prisotnosti Parkinsonove bolezni. Za izboljšanje natančnosti razvrščanja, so bile uporabljene različne tehnike določitve značilk (Pearsonov korelacijski koeficient, Khendallov korelacijski koeficient in Samoorganizacijske gruče) in topologije nevronskih mrež. S pomočjo usmerjene nevronske mreže, je bila dosežena 86,47 % natančnost razvrščanja. Omenjena natančnost je bila dosežena z uporabo redukcije značilk na podlagi Pearsonovega korelacijskega koeficienta. This Master’s thesis discusses artificial intelligence, machine learning, classification of complex patterns and feature selection procedure. Some of the most used classification algorithms are introduced. Algorithm for the detection of Parkinson’s disease based on sound measures has been made. Sound measurements of forty individuals were used as a dataset. Half of the individuals are healthy and half have the Parkinson’s disease. Purpose of this thesis is to present robust system for Parkinson’s disease detection. Few different feature selection techniques (Pearson’s correlation coefficient, Khendall’s correlation coefficient and Self-organizing maps) and neural network topologies have been used for improving classification accuracy. With the use of feed-forward neural network 86,47 % accuracy was achieved based on Pearson’s correlation coefficient.
Databáze: OpenAIRE