Ploidy effects on the relationship between floral phenotype, reproductive investment, and fitness in an autogamous species complex
Autor: | García Muñoz, Ana, Ferrón, Camilo, Vaca‐Benito, Celia, Muñoz Pajares, Antonio Jesús, Abdelaziz Mohamed, Mohamed |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Popis: | This research was supported by a grant from the Spanish Ministry of Economy and Competitiveness (CGL2014‐59886‐JIN), the Organismo Autónomo de Parques Nacionales (Ref: 2415/2017), and the Ministry of Science and Innovation (PID2019‐111294GB‐I00/SRA/10.13039/5011000 11033), including FEDER funds. A.J.M.‐P. was funded by the European Commission under the Marie Sklodowska‐Curie Action Cofund 2016 EU agreement 754446 and the UGR Research and Knowledge Transfer—Athenea3i. A.G.‐M. was supported by the OUTevolution project (PID2019‐ 111294GB‐I00/SRA/10.13039/501100011033) Premise: The relationships between reproductive investment, phenotype, and fitness have been broadly studied in cross-pollinated plants in contrast to selfing species, which are considered less interesting in this area because they are supposed to be a dead end in any evolutionary pathway. Still, selfing plants are unique systems to study these questions since the position of reproductive structures and traits related to flower size play an important role in female and male pollination success. Methods: Erysimum incanum s.l. is a selfing species complex that has three levels of ploidy (diploids, tetraploids, and hexaploids) and traits that are typically associated with the selfing syndrome. Here, we used 1609 plants belonging to these three ploidies to characterize the floral phenotype and spatial configuration of reproductive structures, reproductive investment (pollen and ovule production), and plant fitness. Then, we used structural equation modelling to analyze the relationship between all these variables across ploidy levels. Results: An increase in ploidy level leads to bigger flowers with anthers exserted farther and more pollen and ovules. In addition, hexaploid plants had higher absolute values for herkogamy, which is positively correlated with fitness. Ovule production significantly mediated the natural selection acting on different phenotypic traits and pollen production, a pattern that is maintained across ploidies. Conclusions: The changes in floral phenotypes, reproductive investment, and fitness with ploidy level suggest that genome duplication can be a driver for transitions in reproductive strategy by modifying the investment in pollen and ovules and linking them with plant phenotype and fitness. European Commission 754446 FEDER Ministry of Science and Innovation PID2019‐111294GB‐I00/SRA/10.13039/501100011033 Organismo Autónomo de Parques Nacionales 2415/2017 Spanish Ministry of Economy and Competitiveness CGL2014‐59886‐JIN Universidad de Granada |
Databáze: | OpenAIRE |
Externí odkaz: |