Popis: |
Tissue engineering has emerged as a promising strategy for the replacement of degenerating or damaged tissues in vivo. Also known as regenerative medicine, integral to this therapeutic strategy is biomimetic scaffolds and the biomaterial structural components used to form them. In this study, three different biomaterial scaffolds for tissue engineering applications were fabricated: three-dimensional reverse embedded collagen scaffolds, polymer fusion printed polycaprolactone (PCL) scaffolds, and electrospun gelatin scaffolds. Three-dimensional collagen and PCL scaffolds promoted human adipose-derived stem/stromal cell (ASC) spreading, proliferation, and fibronectin deposition in vitro. Secondly, this study investigated the efficacy of exogenous galectin-3 delivery as a therapeutic in skin healing, given that galectin-3 has been implicated in several wound healing processes. Gelatin polymer blended with recombinant galectin-3 was electrospun into a protein delivery scaffold and employed in a murine model of cutaneous wound healing. Treatment of wounds with the galectin-3/gelatin scaffolds, or with topical galectin-3, did not enhance wound closure, re-epithelialization, or influence macrophage phenotypes in vivo. |