A Computational Framework for Aerodynamic and Aeroelastic Modeling of Wind Loads on Tall Buildings
Autor: | Melaku, Abiy Fantaye |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: |
validation
fluid-structure interaction (FSI) computational efficiency inflow turbulence generation wind-induced response Structural Engineering Atmospheric boundary layer (ABL) open-source code Computational Engineering aeroelastic modeling structural dynamics computational fluid dynamics (CFD) Civil Engineering tall building large-eddy simulation (LES) spectral representation method wind loads software implementation |
Zdroj: | Electronic Thesis and Dissertation Repository |
Popis: | Driven by the burgeoning growth of computing power over the last few decades, the capability of computational fluid dynamics (CFD) to simulate turbulent flows of practical interest has progressed rapidly. In the past, a notable research effort has been dedicated to applying CFD for modeling wind loads on structures, particularly for tall buildings. However, the current state of CFD for wind load evaluation of tall buildings using Large-Eddy Simulation (LES) has several critical challenges, including the treatment of atmospheric boundary layer (ABL) flow conditions, turbulence modeling of separated flows around buildings, and simulation of wind-structure interaction for dynamically sensitive buildings. For CFD to be a practically useful wind engineering tool, these challenges must be addressed adequately meeting the rigors of the current wind engineering practice. This thesis presents the development of a CFD-based framework for accurate aerodynamic and aeroelastic modeling of tall buildings with the objective of overcoming these key limitations. The capabilities of the framework are demonstrated using a series of case studies. The CFD-based framework is developed in three major phases. In the first phase, computationally efficient methods were developed for modeling the characteristics of the approaching ABL turbulence. A novel synthetic inflow turbulence generation method is proposed that satisfies two-point flow statistics coupled with an implicit ground roughness modeling technique to represent the local terrain effect. In the next phase of the framework, aerodynamic wind loads on tall buildings having different surrounding configurations are simulated and validated against wind tunnel results. Initially, the cladding and overall loads, as well as responses of an isolated standard tall building, are investigated. Then, the framework is applied to a more realistic case involving a complex-shaped tall building located in a city center. In the final phase of research, the capability of the framework is extended by implementing a high-fidelity fluid-structure interaction (FSI) procedure to model the aeroelastic response of tall buildings. The implemented FSI algorithm uses a partitioned approach that couples a transient fluid solver with a multi-degree-of-freedom model of the building. Then the FSI procedure is applied to simulate the aeroelastic response of a tall flexible building. Overall, comparing the results from each phase of the study with wind tunnel measurements showed an encouraging level of agreement. It is expected that the framework presented in this thesis is of practical importance to the wind-resistant design of tall buildings. |
Databáze: | OpenAIRE |
Externí odkaz: |