Development of Mixed Matrix Iongel Membranes for CO2 Separation

Autor: Nabais, Ana Rita Mileu Mota
Přispěvatelé: Neves, Luísa, Tomé, Liliana, Crespo, João
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: The climate crisis and the strategies to mitigate it are, undoubtedly, some of the most relevant and discussed issues in today’s society. The continuous increase in greenhouse gas emissions, particularly CO2, and consequent global warming can pose severe risks to the environment and the population. Due to the urgent need to mitigate CO2 emissions, numerous strategies have been considered, particularly the implementation of a Carbon Capture, Utilization and Storage (CCUS) technology. In terms of carbon capture, membrane separation processes offer a variety of advantages, compared to other processes, in terms of lower energy consumption, maintenance requirements, and capital investment. The designable nature of Ionic Liquids (ILs) opens up a wide range of possible chemical structures, targeting specific applications, especially CO2 capture processes. Considering the broad range of tunable chemical and physical properties of ILs and the undeniable advantages of membrane processes, from an economical and environmental point of view, this thesis explores the development of iongel membranes, which are a specific class of IL-based materials, for CO2 separation. Throughout this thesis, different polymer matrices and solid fillers were used to design Mixed Matrix Iongel Membranes (MMIMs) with the intent of, not only enhance their gas separation performance, but also to improve their mechanical, thermal, and chemical stabilities. A fast and solvent-free method was employed to fabricate MMIMs, by free-radical UV polymerization, as an alternative to longer and more complex preparation methods previously used. The main idea throughout the presented thesis is to fine-tune the design of iongel membranes and to address some of the major challenges regarding the use of these IL-based materials, for CO2 separation, in terms of thermal and mechanical properties and stability under different experimental conditions. In this thesis, CO2/N2 (flue gas) and CO2/CH4 (biogas) are the target separations, due to their relevance at an industrial level. Therefore, and considering the importance of evaluating the potential of the iongel membranes in a more realistic scenario, the developed materials were tested under different and relevant experimental conditions, in terms of temperature, pressure and humidity. The data presented throughout Chapters 2 to 6, clearly show that the chemistry and properties of the selected component materials has a significant impact on the MMIMs' properties and overall performance. Moreover, it is expected that the obtained results will be a step towards the design of new and alternative IL-based materials for CO2 separation. As mudanças climáticas e as estratégias para as mitigar são, indiscutivelmente, algumas das questões mais relevantes na sociedade atual. O aumento contínuo das emissões de gases com efeito de estufa, em particular CO2, e consequente aquecimento global podem representar graves riscos para o ambiente e para a população. Devido à urgente necessidade de mitigar as emissões de CO2, têm sido consideradas inúmeras estratégias, em particular, a implementação de tecnologias de captura, utilização e armazenamento de carbono (CCUS). Relativamente à captura de carbono, os processos de separação com membranas oferecem uma variedade de vantagens em termos de consumo energético, requisitos de manutenção e investimento de capital. A possibilidade de desenhar Líquidos Iónicos (LIs) permite obter uma ampla gama de estruturas químicas, direcionadas a aplicações específicas, especialmente para processos de captura de CO2. Considerando a ampla gama de propriedades químicas e físicas dos LIs e as inegáveis vantagens dos processos de membranas do ponto de vista económico e ambiental, esta tese explora o desenvolvimento de membranas ditas “iongel”, que são uma classe específica de materiais baseados em LIs, para a separação de CO2. Ao longo desta tese, foram utilizadas diferentes matrizes poliméricas e materiais sólidos para desenvolver membranas iongel de matriz mista (MMIMs) como uma forma de, não só melhorar o seu desempenho na separação de gases, mas também melhorar a sua estabilidade mecânica, térmica e química. Esta tese apresenta um método rápido e sem recurso a solventes para preparar MMIMs, através da polimerização UV de radicais livres, como alternativa a métodos de preparação mais longos, complexos e poluentes, utilizados anteriormente. A ideia subjacente a este trabalho é afinar/otimizar o desenho das membranas “iongel” e abordar alguns dos principais desafios em relação à utilização destes materiais, para separação de CO2, em termos de propriedades térmicas e mecânicas e estabilidade em diferentes condições experimentais. Nesta tese, foram consideradas as separações CO2/N2 e CO2/CH4, devido à sua relevância a nível industrial. Desta forma, e tendo em conta a importância de avaliar o potencial das membranas “iongel” num cenário mais realista, os materiais desenvolvidos foram testados sob diferentes condições experimentais, em termos de temperatura, pressão e teor de humidade. Os dados apresentados ao longo dos capítulos 2 a 6 mostram claramente que a natureza dos materiais selecionados tem um impacto significativo nas propriedades e desempenho das MMIMs. Além disso, é esperado que os resultados obtidos representem um avanço no desenvolvimento de materiais novos e alternativos à base de LIs para a separação do CO2.
Databáze: OpenAIRE