Popis: |
Metamaterials allow for the possibility to design and fabricate new materials with enhanced me- chanical properties, through the use of additive manufacturing. There are some certain materials’ struc- tures that exhibit excellent properties to withstand externally applied forces. One example of this type of structure is a bi-stable switching mechanism which can regain its original position, after being sub- mitted to a compressive force. This kind of structure should be flexible and strong since it needs to undergo a certain deflection. Another important aspect that was addressed in this work is the structure’s geometry, because of the effect that it has on flexibility. Therefore, this thesis will focus on the proper study, design, 3D printing, and mechanical characterization of a novel unitary compliant bi-stable struc- ture, and its use to build two larger cellular compliant bi-stable structures, a four-cell and a multicell structure, using the unitary one as a building block. All structures were designed in the CAD software Fusion 360 and fabricated with Polylactic Acid filament using the Fused Filament Fabrication process. The fabricated structures were submitted to compressive tests, from where Force vs. Displacement plots were obtained. These results proved that the multicell structure was the stiffest, since it required higher compressive force to perform its function, when compared to the other two structures. The conducted tests were important to check the behavior of each structure while being compressed, where both struc- tures that had more than one cell showed a layered switching behavior. Also, the tests were important to check if the position recovery of the structures was possible to achieve, which was observed in all of them. After the compressive tests, all structures were also submitted to repetitive solicitation tests, to study their repeatability behavior. These results envisage the successful application of these mechanisms towards their implementation in microelectromechanical systems. Os metamateriais permitem fabricar novos materiais com propriedades mecânicas aprimoradas, através do uso de manufatura aditiva. Existem algumas estruturas de determinados materiais que apresentam excelentes propriedades para resistir às forças externas aplicadas sobre eles. Um exemplo deste tipo de estrutura é um mecanismo complacente biestável que pode recuperar a sua posição original, após ser submetido a uma força de compressão. Este tipo de estrutura precisa de ser flexível e forte, porque é projetado para sofrer uma certa deflexão. Outro aspeto importante que foi abordado neste trabalho é a geometria da estrutura, devido ao efeito que esta tem na flexibilidade. Portanto, esta dissertação concentrar-se-á no estudo adequado, desenho, impressão 3D e caracterização mecânica de uma nova estrutura complacente biestável unitária, e o seu uso para construir duas estruturas celulares complacentes biestáveis, uma de quatro células e outra multicelular, usando a estrutura unitária como bloco de construção. Todas as estruturas foram desenhadas no software de CAD Fusion 360 e fabricadas com filamento de Ácido Poliláctico usando o processo de Fabricação com Filamento Fundido. As estruturas fabricadas foram submetidas a ensaios de compressão, de onde foram obtidos gráficos de Força vs. Deslocamento. Estes resultados comprovaram que a estrutura multicelular era a mais rígida, porque necessitou de uma maior força compressiva para desempenhar a sua função. Os testes realizados foram importantes para analisar o comportamento de cada estrutura durante a compressão, onde ambas as estruturas multicelulares apresentaram um comportamento de transição camada a camada. Além disso, os testes foram também importantes para verificar se a recuperação da posição das estruturas era possível, o que foi observado para todas. Após os ensaios de compressão, todas as estruturas foram submetidas a ensaios de solicitação repetitiva, para estudar o seu comportamento de repetibilidade. Estes resultados vislumbram o sucesso da implementação destes mecanismos em sistemas microelectromecânicos. |