Toward a mathematical modelling of white blood cells filtration
Autor: | Belhadj, Mohamed |
---|---|
Přispěvatelé: | Belhadj, Mohamed, Nonlinear Analysis for Biology and Geophysical flows (BANG), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Pierre et Marie Curie - Paris VI, Jean-Frédéric.Gerbeau et Benoit Perthame(Jean-Frederic.Gerbeau@inria.fr, Benoit.Perthame@ens.fr) |
Jazyk: | angličtina |
Rok vydání: | 2005 |
Předmět: |
Volumes finis
Problème de Stefan généralisé Transport and reaction in porous media Homogenization Finite volume scheme Perméabilité Low Solid Fraction Eléments finis mixtes hybrides Milieu Poreux Fibré Degenerate parabolic-hyperbolic system Equation de Darcy [MATH] Mathematics [math] Transport et réaction en milieux poreux Mixed-hybrid finite element scheme Faible Fraction Solide Permeability Système hyperbolique-parabolique dégénéré Homogénéisation generalized Stefan problem [MATH]Mathematics [math] Fibrous Porous Media Darcy Equation Filtration |
Zdroj: | Mathematics [math]. Université Pierre et Marie Curie-Paris VI, 2005. English. ⟨NNT : ⟩ |
Popis: | The aim of this work is to set up mathematical tools (mathematical models and numerical methods) to investigate the white blood cells filtration. In the first part, we set up specific mathematical models to represent the physical phenomena that are involved in the filtration process.The second part is devoted to the mathematical analysis of partial differential equations modelling the filtration. First, we consider a semilinear parabolic-hyperbolic system with a degenerate and anisotropic diffusion. We study the well-posedness of the system using a $L^{1}$ theory; we consider in particular the existence and the uniqueness of a solution and we investigate other mathematical properties such as maximum principle. Then, we establish the relaxation limit as the reaction constant becomes large. We prove that the system converges to a nonlinear parabolic-hyperbolic equation that generalizes the Stefan problem. We also study the flow through fibrous media using homogenization techniques. The fiber network under study is the one already used by M. Briane in the context of heat conduction of biological tissues. We derive and justify the effective Darcy equation and the permeability tensor for such fibrous media. The theoretical results on the permeability are illustrated by some numerical simulations. Finally, the low solid fraction limit is considered. Applying results by G. Allaire to our setting, we justify rigorously the leading order term in the empirical formulas for the effective permeability used in engineering. The results are also confirmed by a direct numerical calculation of the permeability, in which the small diameter of the fibers requires high accuracy approximations.In part 3 we present the construction of suitable numerical methods to compute solutions of the considered models. Precisely, we discuss the mixed hybrid finite element formulation for the space discretization of the Darcy problem. For the discretization of the transport equation, we use a splitting technique for the space discretization and the Euler method for the time discretization. Cette thèse concerne l'étude de modèles mathématiques et méthodes numériques motivés par la filtration des globules blancs du sang. Dans la première partie, nous définissons des modèles mathématiques qui réprésentent les principaux phénomènes physiques qui entrent en jeu dans le procédé de la filtration.La deuxième partie est dédiée à l'analyse mathématique de systèmes d'équations aux dérivées partielles modélisant le procédé de la filtration. Tout d'abord, nous considérons un système d'équations semi-linéaires de type hyperbolique-parabolique avec une diffusion anisotrope dégénérée. Nous étudions ce problème avec une théorie $L^{1}$; nous considérons en particulier l'existence et l'unicité de solutions faibles ainsi que d'autres propriétés comme le principe du maximum; puis nous établissons la limite quand la constante de réaction devient grande. Nous montrons que le système converge vers une équation non linéaire parabolique-hyperbolique qui généralise le problème de Stefan. Nous étudions également, par des techniques de l'homogénéisation, la filtration au travers de milieux poreux fibrés. Le réseau des fibres étudié est celui utilisé par M. Briane dans le cadre d'une étude sur la conduction thermique des tissus biologiques. Nous dérivons et justifions l'équation de Darcy ainsi que la forme du tenseur de perméabilité pour un tel milieu fibreux. Les résultats théoriques concernant la perméabilité sont illustrés par quelques simulations numériques. Finalement, nous considérons le cas où le diamètre des fibres tend vers zéro. En appliquant des résultats de G. Allaire à notre cas, nous justifions rigoureusement la forme du terme dominant dans les formules de perméabilité efficace utilisées en ingénierie. Ces résultats sont également confirmés par un calcul numérique direct de la perméabilité, dans lequel la petitesse du diamètre des fibres rend nécessaire le recours à des approximations de précision élevée.La définition des méthodes numériques efficaces pour approximer la solution des modèles mathématiques est envisagée dans la troisième partie. Précisément, concernant les équations de Darcy, nous avons utilisé la méthode des éléments finis mixtes hybrides. Pour la résolution de l'équation du transport, nous avons implémenté une méthode numérique utilisant des volumes finis pour la discrétisation du terme convection/réaction associé à une approximation mixte hybride pour la discrétisation du terme dispersif. |
Databáze: | OpenAIRE |
Externí odkaz: |